Buch, Englisch, 286 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 612 g
Buch, Englisch, 286 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 612 g
Reihe: Undergraduate Lecture Notes in Physics
ISBN: 978-3-030-63642-5
Verlag: Springer International Publishing
This book introduces physics students to concepts and methods of finance. Despite being perceived as quite distant from physics, finance shares a number of common methods and ideas, usually related to noise and uncertainties. Juxtaposing the key methods to applications in both physics and finance articulates both differences and common features, this gives students a deeper understanding of the underlying ideas. Moreover, they acquire a number of useful mathematical and computational tools, such as stochastic differential equations, path integrals, Monte-Carlo methods, and basic cryptology. Each chapter ends with a set of carefully designed exercises enabling readers to test their comprehension.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik EDV | Informatik Angewandte Informatik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Stochastik Stochastische Prozesse
- Wirtschaftswissenschaften Finanzsektor & Finanzdienstleistungen Internationale Finanzmärkte
- Wirtschaftswissenschaften Finanzsektor & Finanzdienstleistungen Finanzsektor & Finanzdienstleistungen: Allgemeines
Weitere Infos & Material
Chapter 1 - Introduction.- Chapter 2 - Concepts of finance.- Chapter 3 - Portfolio theory and CAPM.- Chapter 4 - Stochastic processes.- Chapter 5 - Black-Scholes differential equation.- Chapter 6 - The Greeks and risk management.- Chapter 7 - Regression models and hypothesis testing.- Chapter 8 - Time series.- Chapter 9 - Bubbles, crashes, fat tails and Levy-stable distributions.- Chapter 10 - Quantum finance and path integrals.- Chapter 11 - Optimal control theory.