Buch, Englisch, 998 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 450 g
With Artificial Intelligence Integration in Energy and Other Use Cases
Buch, Englisch, 998 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 450 g
ISBN: 978-0-323-95112-8
Verlag: William Andrew Publishing
A final section deliver the most advanced content on artificial intelligence with the integration of machine learning and deep learning as a tool to forecast and make energy predictions. The reference covers many introductory programming tools, such as Python, Scikit, TensorFlow and Kera.
Zielgruppe
<p>Energy engineers; electrical engineers; data scientists; environmental engineers; alternative energy researchers</p>
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Technische Wissenschaften Energietechnik | Elektrotechnik Energietechnik & Elektrotechnik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
Weitere Infos & Material
Part I: Infrastructure Concepts 1. Knowledge is Power 2. A General Approach to Business Resilience System (BRS) 3. Data Warehousing, Data Mining, Data Modeling, and Data Analytics 4. Structured and Unstructured Data Processing 5. Mathematical Modeling Driven Predication 6. Fuzzy Logics: A New Method of Predictions 7. Neural Network Concept 8. Population - Human Growth Driving Ecology 9. Economic Factors 10. Risk Management, Risk Assessment, and Risk Analysis 11. Today's Fast-Paced Technology
Part II: The Impact of Energy on Tomorrow's World 12. Understanding of Energy 13. Economic Impact of Energy 14. Renewable Energy 15. Non-Renewable Energy 16. Nuclear Energy as Non-Renewable Energy Source 17. Energy Storage Technologies and their Role in Renewable Integration
Part III: The Mathematical Approach and Modeling 18. Predictive Analytics 19. Engineering Statistics 20. Data and Data Collection Driven Information 21. Statistical Forecasting - Regression and Time Series Analysis 22. Introduction to Forecasting: The Simplest Models 23. Notes on Linear Regression Analysis 24. Principles and Risks of Forecasting 25. Artificial Intelligence Driving Predictive and Forecasting Paradigm
Part IV: Python Programming Driven Artificial Intelligence 26. Python Programming Driven Artificial Intelligence 27. Artificial Intelligence, Machine Learning and Deep Learning Driving Big Data 28. Artificial Intelligence, Machine Learning and Deep Learning Use Cases