Zuur / Saveliev / Ieno | Mixed Effects Models and Extensions in Ecology with R | Buch | 978-0-387-87457-9 | sack.de

Buch, Englisch, 574 Seiten, Format (B × H): 161 mm x 244 mm, Gewicht: 1056 g

Reihe: Statistics for Biology and Health

Zuur / Saveliev / Ieno

Mixed Effects Models and Extensions in Ecology with R


2009. Auflage 2009
ISBN: 978-0-387-87457-9
Verlag: Springer-Verlag New York Inc.

Buch, Englisch, 574 Seiten, Format (B × H): 161 mm x 244 mm, Gewicht: 1056 g

Reihe: Statistics for Biology and Health

ISBN: 978-0-387-87457-9
Verlag: Springer-Verlag New York Inc.


Building on the successful Analysing Ecological Data (2007) by Zuur, Ieno and Smith, the authors now provide an expanded introduction to using regression and its extensions in analysing ecological data. As with the earlier book, real data sets from postgraduate ecological studies or research projects are used throughout. The first part of the book is a largely non-mathematical introduction to linear mixed effects modelling, GLM and GAM, zero inflated models, GEE, GLMM and GAMM. The second part provides ten case studies that range from koalas to deep sea research. These chapters provide an invaluable insight into analysing complex ecological datasets, including comparisons of different approaches to the same problem. By matching ecological questions and data structure to a case study, these chapters provide an excellent starting point to analysing your own data. Data and R code from all chapters are available from www.highstat.com.
Zuur / Saveliev / Ieno Mixed Effects Models and Extensions in Ecology with R jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Limitations of Linear Regression Applied on Ecological Data.- Things are not Always Linear; Additive Modelling.- Dealing with Heterogeneity.- Mixed Effects Modelling for Nested Data.- Violation of Independence – Part I.- Violation of Independence – Part II.- Meet the Exponential Family.- GLM and GAM for Count Data.- GLM and GAM for Absence–Presence and Proportional Data.- Zero-Truncated and Zero-Inflated Models for Count Data.- Generalised Estimation Equations.- GLMM and GAMM.- Estimating Trends for Antarctic Birds in Relation to Climate Change.- Large-Scale Impacts of Land-Use Change in a Scottish Farming Catchment.- Negative Binomial GAM and GAMM to Analyse Amphibian Roadkills.- Additive Mixed Modelling Applied on Deep-Sea Pelagic Bioluminescent Organisms.- Additive Mixed Modelling Applied on Phytoplankton Time Series Data.- Mixed Effects Modelling Applied on American Foulbrood Affecting Honey Bees Larvae.- Three-Way Nested Data for Age Determination Techniques Applied to Cetaceans.- GLMM Applied on the Spatial Distribution of Koalas in a Fragmented Landscape.- A Comparison of GLM, GEE, and GLMM Applied to Badger Activity Data.- Incorporating Temporal Correlation in Seal Abundance Data with MCMC.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.