E-Book, Englisch, 831 Seiten, eBook
Abdel Wahab Proceedings of the 7th International Conference on Fracture Fatigue and Wear
1. Auflage 2018
ISBN: 978-981-13-0411-8
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
FFW 2018, 9-10 July 2018, Ghent University, Belgium
E-Book, Englisch, 831 Seiten, eBook
Reihe: Lecture Notes in Mechanical Engineering
ISBN: 978-981-13-0411-8
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Organisation;8
2.1;Organising Committee;8
2.2;Chairman;8
2.3;Co-chairman;8
2.4;International Scientific Committee;8
3;Contents;10
4;Fracture;17
5;Failure Analysis of a Removable Support of a Cockpit Seat in a STOL Airplane;18
5.1;Abstract;18
5.2;1 Introduction;18
5.3;2 Results and Discussion;20
5.3.1;2.1 Macro Examination;20
5.3.2;2.2 SEM;22
5.3.3;2.3 Microstructure;25
5.3.4;2.4 Micro Hardness Test;26
5.3.5;2.5 Estimated Maximum Forces;27
5.4;3 Conclusions;31
5.5;4 Recommendations;31
5.6;Acknowledgments;32
5.7;References;32
6;Spot Welding Joint’s Fracture Behavior and Fundamental;33
6.1;Abstract;33
6.2;1 Introduction;33
6.3;2 Fracture Mechanics of Spot Welds;34
6.4;3 Modeling and Simulation;35
6.4.1;3.1 Specimen Modeling;35
6.4.2;3.2 Material Properties;35
6.4.3;3.3 Finite Element Analysis Code;35
6.4.4;3.4 Mesh Generation and Boundary Conditions;36
6.5;4 Results and Discussion;36
6.5.1;4.1 Maximum Stresses and Crack Propagation;36
6.6;5 Conclusions;41
6.7;Acknowledgments;41
6.8;References;41
7;Failure and Fracture Analysis of Al-alloy Wheel Rim of a Vehicle;43
7.1;Abstract;43
7.2;1 Introduction and Background Information;43
7.3;2 Experimental Procedure;44
7.4;3 Results and Discussion;45
7.4.1;3.1 Visual Examination and Stereomicroscopy;45
7.4.2;3.2 SEM Fractographic Evaluation;45
7.4.3;3.3 Optical Metallography;45
7.4.4;3.4 SEM/EDS Analysis;47
7.4.5;3.5 Charpy Impact Testing;49
7.5;4 Conclusions;54
7.6;References;55
8;Key Parameters for Fracture Toughness of Particle/Polymer Nanocomposites; Sensitivity Analysis via XFEM Modeling Approach;56
8.1;1 Introduction;56
8.2;2 Numerical Modeling for Fracture of Particle/PNCs;57
8.3;3 Sensitivity Analysis Methods;60
8.3.1;3.1 Regression Method;60
8.3.2;3.2 Elementary Effects;60
8.3.3;3.3 Sobol' Method;60
8.3.4;3.4 Extended Fourier Amplitude Sensitivity Test;61
8.4;4 Results;62
8.5;5 Conclusion;64
8.6;References;64
9;A Criterion for Crack Initiation at Blunt Notches Based on the Concept of Local Strength;67
9.1;Abstract;67
9.2;1 Introduction;67
9.3;2 Problem Statement;69
9.4;3 Fracture Criterion;70
9.5;4 Examples of Fracture Criterion Application;71
9.5.1;4.1 Plate with an Elliptic Hole Under Tension;71
9.5.2;4.2 Infinite Body with Ellipsoidal Hollow Under Tension;72
9.6;5 Comparison Between Predicted and Experimental Data;73
9.6.1;5.1 Plate with a Circular Hole Under Tension;73
9.6.2;5.2 Plate with Lateral Notches Under Tension;73
9.6.3;5.3 Bar with a Circumferential Notch Under Tension;74
9.6.4;5.4 Plate with a Circular Hole Under Compression;75
9.7;6 Conclusions;75
9.8;Acknowledgments;76
9.9;References;76
10;Effect of Friction Coefficient and Maximum Contact Pressure on the Spalling Depth of Gear Teeth Flank;78
10.1;Abstract;78
10.2;1 Introduction;78
10.3;2 Numerical Simulation;79
10.4;3 Results and Discussion;79
10.5;4 Conclusion;82
10.6;References;82
11;Transient Analysis of Multiple Interface Cracks in Two Bonded Elastic and Piezoelectric Layers;84
11.1;Abstract;84
11.2;1 Introduction;84
11.3;2 Formulation of the Problem;85
11.4;3 Derivation of the Integral Equations;88
11.5;4 Results and Discussions;89
11.6;5 Concluding Remarks;91
11.7;References;91
12;A Study on the Constitutive Equation Effects in the Fracture Initiation of AA5450 Sheets;93
12.1;Abstract;93
12.2;1 Introduction;93
12.3;2 Experiments;94
12.4;3 Finite Element Model;94
12.5;4 Results and Discussions;95
12.6;5 Conclusions;97
12.7;References;97
13;Predicting the Failure Type of Liquid Hydrocarbon Pipeline Using Fuzzy Expert System;99
13.1;Abstract;99
13.2;1 Introduction;99
13.3;2 Fuzzy Expert Systems;100
13.4;3 Development of a Fuzzy Logic-Based Failure Model;101
13.4.1;3.1 Data Collection, Filtering and Classification;101
13.4.2;3.2 Fuzzy of Variables and Define Membership Functions;101
13.4.3;3.3 Establishing a Fuzzy Rule Base for FES;103
13.4.4;3.4 Model Implementation;104
13.4.5;3.5 Model Validation;104
13.5;4 Conclusion;104
13.6;References;105
14;Simulation of Loading Rate Effects on Dynamic Brittle Failure of Concrete Structures Using a Two-Scale Damage Model;106
14.1;1 Introduction;106
14.2;2 Dynamic Damage Model;107
14.3;3 Compact Tension Test;108
14.4;4 L-Shaped Specimen Test;110
14.5;5 Conclusions;112
14.6;References;112
15;Deformation Behavior and Fracture of Al-CuZr Nano-Laminates: A Molecular Dynamics Simulation Study;114
15.1;Abstract;114
15.2;1 Introduction;114
15.3;2 Simulation Methodology;115
15.4;3 Results and Discussions;116
15.5;4 Conclusions;119
15.6;References;120
16;Model of Damaged Medium for Describing Fatigue Fracture of Materials and Structures;122
16.1;Abstract;122
16.2;1 Introduction;122
16.3;2 Defining Relations of Mechanics of Damaged Media;124
16.4;3 The Investigation Results;127
16.5;4 Conclusion;137
16.6;Acknowledgements;138
16.7;References;138
17;Modeling of Fatigue Fracture of Coatings in Multi-cycle Friction Contact;140
17.1;Abstract;140
17.2;1 Introduction;140
17.3;2 Problem Formulation and the Method of Solution;141
17.3.1;2.1 Contact Problem Solution;141
17.3.2;2.2 Calculation of Internal Stresses;143
17.3.3;2.3 Model of the Contact Fatigue at the Layer-Substrate Interface;143
17.4;3 Results and Discussion;145
17.5;4 Conclusions;148
17.6;Acknowledgments;148
17.7;References;148
18;Research and Modeling of Stress-Strain State and Fracture Strength of Triplexes at Temperatures 293–213 K;150
18.1;Abstract;150
18.2;1 Introduction;150
18.3;2 Materials and Methods;153
18.3.1;2.1 Test Samples and Materials;153
18.3.2;2.2 Modeling of the Adhesion Processes and the Triplex Separate Layers Fracture in the Presence of Crack-Like Defects;154
18.3.3;2.3 Measurements;156
18.3.4;2.4 Methodology to Determine Stresses;157
18.4;3 Experimental Results;158
18.5;4 Analysis of the Experimental Results of Studies of Stress-Strain and Boundary States of the Triplex in the Temperature Range 293–213 K;160
18.6;5 Numerical Modeling of the Framing Influence on the SIF of Surface Cracks;161
18.6.1;5.1 Modeling Conditions;161
18.6.2;5.2 Numerical Results and Discussion;162
18.7;6 Conclusions;163
18.8;References;164
19;Influence of Low Temperature on Mechanical Properties of Carbon Steel P110 Estimated by Means of Small Punch Test;166
19.1;Abstract;166
19.2;1 Introduction;166
19.3;2 Experimental Methodology;168
19.4;3 Results and Discussion;170
19.5;4 Summary;176
19.6;Acknowledgements;177
19.7;References;177
20;Crack Propagation in Various Double Cantilever Beam Geometric Configurations;179
20.1;Abstract;179
20.2;1 Introduction;179
20.3;2 Procedures and Methodology Used;180
20.3.1;2.1 Williams Power Series;180
20.3.2;2.2 Over-Deterministic Method (ODM);180
20.4;3 Cracked Geometry, Numerical Model, ODM, MTS Criterion;181
20.4.1;3.1 Investigated Cracked Geometry;181
20.4.2;3.2 Numerical Model in ANSYS;181
20.4.3;3.3 ODM Procedure;182
20.4.4;3.4 MTS Criterion Evaluation;182
20.5;4 Results and Discussion;182
20.6;5 Conclusion;184
20.7;Acknowledgements;184
20.8;References;184
21;Lateral Indentation and Impact Analyses on Curved Composite Shells;186
21.1;1 Introduction;186
21.2;2 Materials and Methods;187
21.2.1;2.1 Experimental Setup and Testing;188
21.2.2;2.2 Numerical Analyses;189
21.3;3 Results and Discussion;191
21.3.1;3.1 Sensitivity Analysis on the Hashin Parameters;193
21.4;4 Conclusions;197
21.5;References;198
22;Structured Learning-Based Sinusoidal Modelling for Gear Diagnosis and Prognosis;199
22.1;Abstract;199
22.2;1 Introduction;199
22.3;2 Problem Formulation;200
22.4;3 The Structured Learning Based Sinusoidal Modelling;203
22.5;4 Performance Investigation;204
22.6;5 Conclusion;207
22.7;References;207
23;Singular Stress Field of Interfacial Small Crack in Orthotropic Bonded Plate;209
23.1;Abstract;209
23.2;1 Introduction;209
23.3;2 Singular Stress Field of Interface Edge;210
23.3.1;2.1 Definition of Stress Intensity Factor;210
23.4;3 Method of Analysis;211
23.4.1;3.1 Analysis Condition;211
23.4.2;3.2 Determination of Stress Intensity Factor;212
23.5;4 Numerical Results and Discussions;212
23.5.1;4.1 Expression of Stress Intensity Factor of Small Edge Interface Crack;212
23.5.2;4.2 Effect of Material Combination;213
23.6;5 Conclusions;215
23.7;References;216
24;Comparative Research on Calculation Methods of Stress Intensity Factors and Crack Propagation Criterion;217
24.1;Abstract;217
24.2;1 Introduction;217
24.3;2 Calculation Methods of Stress Intensity Factor;218
24.4;3 Calculation Methods of Crack Propagation Criterion;220
24.5;4 Conclusions;224
24.6;Acknowledgements;224
24.7;References;224
25;Crack Identification Using eXtended IsoGeometric Analysis and Particle Swarm Optimization;225
25.1;Abstract;225
25.2;1 Introduction;225
25.3;2 Motivation and X-IGA Approach in Forward Problem;226
25.3.1;2.1 A Brief of B-Spline/NURBS Functions;227
25.3.2;2.2 XIGA Implementation;227
25.4;3 Particle Swarm Optimization (PSO);229
25.5;4 Numerical Results;231
25.5.1;4.1 Cracked Plate - Scenario 1;231
25.5.2;4.2 Cracked Plate - Scenario 2;231
25.5.3;4.3 Cracked Plate - Scenario 3;233
25.5.4;4.4 Cracked Plate - Scenario 4;234
25.6;5 Conclusion;236
25.7;References;236
26;Fatigue;238
27;PWR Fatigue Testing at SCK•CEN in the Framework of INCEFA+;239
27.1;Abstract;239
27.2;1 Introduction;239
27.3;2 Material;240
27.4;3 Specimen;240
27.5;4 Environment;242
27.6;5 Fatigue Testing;242
27.7;6 Extensometers;244
27.8;7 Test Result;244
27.9;8 Discussion of Test Results;252
27.10;9 Conclusion;253
27.11;Acknowledgments;254
27.12;References;254
28;The Effect of Technological and Structural Factors on the Strength of Polyethylene Adhesive Joints;255
28.1;Abstract;255
28.2;1 Introduction;256
28.3;2 Methodology;257
28.3.1;2.1 Adherend;257
28.3.2;2.2 Surface Treatment;257
28.3.3;2.3 Adhesives;258
28.3.4;2.4 Adhesive Joints;259
28.3.5;2.5 Strength Tests and Statistical Analysis;260
28.4;3 Results;261
28.4.1;3.1 Results of Adhesive Joints Strength;261
28.4.2;3.2 Statistical Results of Adhesive Joints Strength;262
28.4.3;3.3 Elongation at Break of Adhesive Joints;264
28.4.4;3.4 Failure Patterns of Adhesive Joints;266
28.4.5;3.5 Results Discussion;268
28.5;4 Conclusions;269
28.6;References;270
29;Compression of Strain Load History Using Holder Exponents of Continuous Wavelet Transform;272
29.1;Abstract;272
29.2;1 Introduction;273
29.3;2 Theoretical Background;274
29.3.1;2.1 Singularities Detection with Holder Exponents;274
29.4;3 Methodology;275
29.4.1;3.1 Strain Signal Acquisition;276
29.4.2;3.2 Continuous Wavelet Transform and Lipschitz Regularity Analysis;276
29.4.3;3.3 Compression of Strain Time Histories and Fatigue Life Prediction;278
29.5;4 Results and Discussion;280
29.5.1;4.1 Continuous Wavelet Transform of Time History;280
29.5.2;4.2 Comparison of Lipschitz-Based and Time-Domain-Based FDE Techniques;281
29.6;5 Conclusions;285
29.7;Acknowledgements;286
29.8;References;286
30;Structural Optimization for the Gusset Plate in the Boom Structure of Concrete Pump Truck;287
30.1;Abstract;287
30.2;1 Introduction;287
30.3;2 General Introduction of CPT;288
30.3.1;2.1 Configuration of CPT;288
30.3.2;2.2 Loading Characterization;289
30.3.3;2.3 Gusset Plate;290
30.3.4;2.4 Representative of Region and Loading for Optimization;292
30.4;3 Design Of Experiment (DOE);294
30.4.1;3.1 Design Process;294
30.4.2;3.2 Conceptual Design;294
30.4.3;3.3 Detailed Design;296
30.5;4 Conclusion;298
30.6;Acknowledgement;299
30.7;References;299
31;Failure Analysis of Prematurely Failed Hip Joint Implant Inside the Femur Bone;300
31.1;Abstract;300
31.2;1 Introduction;300
31.3;2 Experimental;302
31.3.1;2.1 Material;302
31.3.2;2.2 Method;303
31.4;3 Results and Discussion;304
31.4.1;3.1 Hardness and Bend Test;304
31.4.2;3.2 Chemical Analysis Test;304
31.4.3;3.3 Stereo Zoom and Optical Microscopy;305
31.4.4;3.4 SEM-EDS Analysis;306
31.5;4 Conclusions;308
31.6;Acknowledgements;308
31.7;References;309
32;Comparative Study of Defect-Based and Plastic Damage-Based Approaches for Fatigue Lifetime Calculation of Selective Laser-Melted AlSi12;311
32.1;Abstract;311
32.2;1 Introduction;311
32.3;2 Materials and Methods;314
32.3.1;2.1 Experimental Setup;314
32.3.2;2.2 Theory and Calculations;319
32.4;3 Results and Discussion;321
32.5;4 Conclusions and Outlook;324
32.6;Acknowledgements;325
32.7;References;325
33;Fatigue Damage of Waterwall Tubes in a 1000 MW USC Boiler;328
33.1;Abstract;328
33.2;1 Introduction;328
33.3;2 Description of the Boiler;329
33.4;3 Results and Discussion;330
33.4.1;3.1 Visual Observation;330
33.4.2;3.2 Chemical Analysis;330
33.4.3;3.3 Mechanical Properties;330
33.4.4;3.4 Microstructural Observation;331
33.4.5;3.5 Cracks and Fracture Analysis;331
33.4.6;3.6 EDS and XRD Phase Analysis;333
33.4.7;3.7 Root Cause Analysis;336
33.5;4 Conclusions and Recommendations;337
33.6;Acknowledgements;338
33.7;References;338
34;Fatigue of Steels Used in the Manufacture of Components for Heavy Load Vehicles;339
34.1;Abstract;339
34.2;1 Introduction;339
34.3;2 Experimental Procedure;341
34.4;3 Results and Discussion;343
34.5;4 Conclusions;348
34.6;Acknowledgements;348
34.7;References;349
35;Specimen Thickness Effects on Front Edge Shape of Fatigue Crack in Al7075-T6 Alloy;350
35.1;Abstract;350
35.2;1 Introduction;350
35.3;2 Material, Specimen and Experimental Procedures;351
35.4;3 Results and Discussion;352
35.4.1;3.1 Curvature Radius of Fatigue Crack Front Edge;352
35.4.2;3.2 Change in the Plastic Zone Size in the Specimen Thickness Direction;354
35.5;4 Conclusion;357
35.6;References;357
36;Finite Lifetime Estimation of Mechanical Assemblies Subjected to Fretting Fatigue Loading;359
36.1;Abstract;359
36.2;1 Introduction;359
36.3;2 The MWCM to Estimate Fatigue Life Under CA Multiaxial Fatigue Loading;360
36.4;3 The TCD Approach;362
36.5;4 Estimation of Stress Quantities Relative to the Critical Plane Under CA Multiaxial Loading;363
36.6;5 Formalization of the Design Methodology to Estimate Finite Lifetime of Mechanical Assemblies Under CA Fretting Fatigue Loading;364
36.7;6 Validation with Experimental Data;366
36.8;7 Results and Discussion;369
36.9;8 Conclusion;370
36.10;Acknowledgment;370
36.11;References;371
37;Probabilistic Modeling of Coating Delamination;373
37.1;Abstract;373
37.2;1 Problem Formulation and Resulting Equations;374
37.2.1;1.1 Discontinuous Solutions for Coated Half-Plane with Interface Cracks;375
37.2.2;1.2 J-Integrals and Stress Intensity Factors at Interface Crack Tips;377
37.3;2 Probabilistic Model of Cyclic Coating Delamination;378
37.4;3 Some Numerical Results;380
37.5;4 Conclusions;383
37.6;References;384
38;Failure of Giant Wheel Ride at an Amusement Park;385
38.1;Abstract;385
38.2;1 Introduction;385
38.3;2 The Parameters of the Central Shaft;387
38.4;3 Metallurgical Analysis;387
38.5;4 Structural/Stress Analysis;389
38.6;5 Conclusions;391
38.7;References;391
39;Thermal-Mechanical Fatigue Analysis of a Main Steam Isolation Valve of a Boiling Water Reactor-5;393
39.1;Abstract;393
39.2;1 Introduction;393
39.3;2 Statement of the Problem;394
39.4;3 Materials and Methods;395
39.5;4 Results;399
39.6;5 Conclusions;401
39.7;Acknowledgement;402
39.8;References;402
40;Influence of Soft Particle Peening Treatment on Fatigue Strength of Aluminum Alloy A5052;404
40.1;Abstract;404
40.2;1 Introduction;404
40.3;2 Influence of Hardness on Surface Modification Effect [13];405
40.3.1;2.1 Experimental Method;405
40.3.2;2.2 Result of Extent of Wear and Vickers Hardness;406
40.4;3 Influence of Soft Resin Particle Peening on Fatigue Strength Characteristics of Aluminum Alloy A5052;407
40.4.1;3.1 Material and Experimental Procedure;407
40.4.2;3.2 Influence on Hardness Distribution, Surface Roughness and Residual Stress;408
40.4.3;3.3 Influence on Fatigue Strength;410
40.4.4;3.4 Consideration by Impact Energy;411
40.5;4 Conclusions;413
40.6;References;413
41;Fatigue Life Calculation of Load-Adapted Hybrid Angular Contact Ball Bearings;415
41.1;Abstract;415
41.2;1 Introduction;415
41.3;2 Method of Calculation;416
41.3.1;2.1 Input Parameters;417
41.3.2;2.2 FE Model;420
41.3.3;2.3 Calculation of Bearing Fatigue Life;421
41.4;3 Calculational Results;423
41.5;4 Conclusion and Outlook;427
41.6;Acknowledgments;427
41.7;References;427
42;The Influence of Hydrogen on Fatigue Fracture in Mooring Chain Steel;429
42.1;Abstract;429
42.2;1 Introduction;429
42.3;2 Experimental Procedure and Methods;430
42.3.1;2.1 Materials;430
42.3.2;2.2 Microscopic Observation;430
42.3.3;2.3 Mechanical Tests;431
42.3.4;2.4 Methods;431
42.4;3 Results;431
42.5;4 Discussion;436
42.6;5 Conclusions;439
42.7;Acknowledgements;439
42.8;References;439
43;Monitoring Micro-damage Evolution in Structural Steel S355 Using Speckle Interferometry;441
43.1;Abstract;441
43.2;1 Introduction;441
43.3;2 Basics on Fatigue Damage and Metrology;441
43.3.1;2.1 Stages of Cyclic Damage;441
43.3.2;2.2 Experimental Background on Damage Assessment;442
43.3.3;2.3 Fundamentals of Speckle Interferometry;443
43.4;3 Experimental Methods and Materials;444
43.5;4 Measurement Results;446
43.6;5 Summary and Outlook;450
43.7;Acknowledgment;450
43.8;References;450
44;On an Extension of the Fatemi and Socie Equation for Rolling Contact in Rolling Bearings;452
44.1;Abstract;452
44.2;1 Introduction;453
44.3;2 Theory and Description;455
44.3.1;2.1 Critical Plane Criterion of Fatemi and Socie;455
44.3.2;2.2 Determination of Shear Strain Amplitude and Normal Stress;457
44.4;3 Application to Rolling Contact;459
44.4.1;3.1 Configuration;459
44.4.2;3.2 Influence of the Normal Stress in the Critical Plane;461
44.5;4 Simulations Results;464
44.5.1;4.1 Critical Plane Orientation and Location;465
44.5.2;4.2 Crack Initiation Lifetime Calculation in the Approach A1 and A2;466
44.5.3;4.3 Comparison with Standard DIN ISO 281;468
44.6;5 Conclusion;469
44.7;References;470
45;Durability of Steel Joints with Ductile Adhesive Subjected to Fatigue Tests;472
45.1;Abstract;472
45.2;1 Introduction;472
45.3;2 Experimental;473
45.4;3 Results and Discussion;474
45.5;4 Conclusions;477
45.6;References;477
46;Effect of an Adhesive Bonding on the Fatigue Life of Advanced High Strength Steel Spot-Welds;478
46.1;Abstract;478
46.2;1 Introduction;478
46.3;2 Specimen Preparation;479
46.4;3 Test Results and Discussion;480
46.4.1;3.1 Thickness Dependence of the Joint Strength;480
46.4.2;3.2 Sheet Strength Dependence of the Joint Strength;486
46.5;4 Conclusions;492
46.6;Acknowledgement;493
46.7;References;493
47;Fatigue Life Predictions for L-Shaped Cracks;494
47.1;Abstract;494
47.2;1 Introduction;494
47.3;2 Methodology and Formulation;495
47.3.1;2.1 Normal Crack Front Advance;495
47.3.2;2.2 Length Advance;498
47.4;3 Results and Discussion;498
47.4.1;3.1 Normal Crack Front Advance;498
47.4.2;3.2 Length Advance;502
47.5;4 Conclusions;503
47.6;Acknowledgements;503
47.7;References;503
48;Modelling of Short Crack Arrest and Fatigue Propagation Using Non-local Fracture Criteria;505
48.1;Abstract;505
48.2;1 Introduction;505
48.3;2 Non-local Fracture Criteria;506
48.4;3 Dugdale’s Crack Model;507
48.5;4 Fatigue Growth of the Short Cracks;508
48.6;5 Arrest of the Short Cracks;510
48.7;6 Conclusions;512
48.8;References;512
49;Critical Analysis of Randomly Rough Surfaces for Contact Mechanics Through Statistical Simulation;514
49.1;Abstract;514
49.2;1 Introduction;514
49.3;2 Simulation Methods;516
49.4;3 Simulations and Simulation Results;519
49.5;4 Discussion;522
49.6;5 Conclusions;524
49.7;Acknowledgements;524
49.8;References;524
50;Panel Test for New Developed Airbus A321 ACF Overwing Door and Surrounding Structure;526
50.1;Abstract;526
50.2;1 Introduction into the A321neo ACF Project;526
50.3;2 Influence of Design on Verification and Validation Needs;527
50.4;3 Test Scenario;527
50.5;4 Description of Chosen Test Set-up;530
50.6;5 Specimen Adaptation to Test Needs;531
50.7;6 Test Program;531
50.8;7 Conclusion;533
50.9;Acknowledgement;534
50.10;References;534
51;Strain Rate Concentration Factor for Round and Flat Test Specimens;535
51.1;Abstract;535
51.2;1 Introduction;535
51.3;2 Definition of Strain Rate Concentration Factor;536
51.4;3 Strain Rate Concentration for the Round and Flat Specimen;537
51.5;4 Relationship Between the Strain Rate Concentration Factor and the Stress Concentration Factor;538
51.6;5 Conclusion;541
51.7;References;542
52;A Comparison Between Critical-Plane and Stress-Invariant Approaches for the Prediction of Fretting Fatigue Crack Nucleation;544
52.1;Abstract;544
52.2;1 Introduction;544
52.3;2 Theoretical Background;545
52.3.1;2.1 Critical Plane Approach;545
52.3.2;2.2 Stress Invariant Approach;546
52.4;3 Experimental Data;546
52.5;4 Methodology;547
52.5.1;4.1 Nucleation Life;547
52.5.2;4.2 Propagation Life;548
52.6;5 Results;548
52.6.1;5.1 Comparison of Initiation Location;548
52.6.2;5.2 Comparison of Fretting Fatigue Life;549
52.7;6 Conclusions;550
52.8;Acknowledgement;551
52.9;References;551
53;Effect of Short Crack Behavior on the Propagation Life Prediction for a Fretting Cylindrical Pad Configuration;553
53.1;Abstract;553
53.2;1 Introduction;553
53.3;2 Numerical Analysis;554
53.3.1;2.1 Finite Element Model;554
53.3.2;2.2 Life Predictions;556
53.4;3 Results;557
53.5;4 Conclusions;559
53.6;Acknowledgements;559
53.7;References;559
54;Simulation of Cyclic Deformation Behavior of Ferritic P92 Steel Based on Unified Viscoplastic Model;561
54.1;Abstract;561
54.2;1 Introduction;561
54.3;2 Experimental Procedure;562
54.4;3 Experimental Results and Discussion;563
54.5;4 Simulation of LCF and CFI Deformation;565
54.5.1;4.1 Constitutive Model;565
54.5.2;4.2 Determination of Material Parameters;566
54.5.3;4.3 Simulation Results and Discussion;567
54.6;5 Conclusion;569
54.7;Acknowledgements;569
54.8;References;569
55;Fatigue Life Analysis of Un-repaired and Repaired Metallic Substrate Using FRANC2D;572
55.1;Abstract;572
55.2;1 Introduction;572
55.3;2 Materials and Methodology;573
55.3.1;2.1 Materials;573
55.3.2;2.2 Modelling in FRANC2D/L;574
55.4;3 Results and Discussion;575
55.5;4 Conclusions;578
55.6;Acknowledgements;578
55.7;References;578
56;Wear;580
57;Effect of Cryosoaking Period on Soft Tempering Temperature and Wear Mechanism in AISI H11 Tool Steel;581
57.1;Abstract;581
57.2;1 Introduction;581
57.3;2 Experimental Procedures;582
57.3.1;2.1 Material Selection;582
57.3.2;2.2 Heat Treatment and Cryogenic Treatment;582
57.3.3;2.3 Hardness Test;583
57.3.4;2.4 Wear Test;583
57.3.5;2.5 Metallography;584
57.4;3 Results and Discussion;584
57.4.1;3.1 Hardness Variation;584
57.4.2;3.2 Morphology of Carbides;584
57.4.3;3.3 Wear Mechanism;585
57.4.4;3.4 Standardization of Soft Tempering Temperature;589
57.5;4 Conclusions;592
57.6;References;592
58;Dry Wear Behavior of Basalt/Carbon-Reinforced Epoxy Composite by Taguchi Method;593
58.1;Abstract;593
58.2;1 Introduction;593
58.3;2 Materials;595
58.3.1;2.1 Experimental Design;595
58.3.2;2.2 Wear Tests;596
58.4;3 Results and Discussion;596
58.4.1;3.1 Analysis of Weight Loss;596
58.4.2;3.2 Anova;599
58.5;4 Conclusions;600
58.6;References;600
59;Wear Property of Epoxy Reinforced with Carbon Using a Response Surface Methodology;603
59.1;Abstract;603
59.2;1 Introduction;603
59.3;2 Materials;605
59.3.1;2.1 Experimental Design;605
59.3.2;2.2 Wear Tests;606
59.4;3 Results and Discussion;606
59.4.1;3.1 Weight Loss;606
59.4.2;3.2 Anova;608
59.4.3;3.3 Regression Analysis;611
59.4.4;3.4 Optimization of Responses;611
59.5;4 Conclusions;612
59.6;References;612
60;Microabrasive Wear of Titanium Chrome Plated;614
60.1;Abstract;614
60.2;1 Introduction;614
60.3;2 Methods;615
60.3.1;2.1 Electrolytic Chromium Deposit;615
60.3.2;2.2 Testing Equipment;615
60.3.3;2.3 Test Method;616
60.3.4;2.4 Characteristics of the Specimens;617
60.3.5;2.5 Hardness Evaluation;618
60.3.6;2.6 Wear Tests of the Uncoated Specimens of Titanium;618
60.3.7;2.7 Wear Tests of the Titanium Specimens Coated with Chrome;619
60.4;3 Discussion;621
60.5;4 Conclusions;624
60.6;References;625
61;Experimental Investigate of the Wear and Friction Performance Considering Effects of Surface Topography and Lubricant;627
61.1;Abstract;627
61.2;1 Introduction;627
61.3;2 Effects of Surface Topography;628
61.4;3 Effects of Lubricant Characteristics;629
61.5;4 Conclusion;631
61.6;Acknowledgments;632
61.7;References;632
62;Experimental Simulation and Analysis of Die Casting Mould Wear;633
62.1;Abstract;633
62.2;1 Introduction;633
62.3;2 Prototype Wear Testing Equipment;633
62.4;3 Experimental Work;635
62.4.1;3.1 Samples;635
62.4.2;3.2 Experiment Parameters;635
62.4.3;3.3 Results and Analysis;636
62.5;4 Conclusion;638
62.6;Acknowledgements;638
62.7;References;638
63;Structure and Properties of the New Antifriction Composite Materials for High-Temperature Friction Units;640
63.1;Abstract;640
63.2;1 Introduction;640
63.3;2 Experimental Procedure;642
63.4;3 Conclusion;648
63.5;References;648
64;Comprehension of Thermomechanical Phenomena and Material Behavior During High Speed Contact;650
64.1;Abstract;650
64.2;1 Introduction;650
64.3;2 Contact Interaction at ENIT;652
64.3.1;2.1 Presentation of the Test Device;652
64.3.2;2.2 Test Device Instrumentation;653
64.3.3;2.3 Contact Pieces and Contact Geometry;653
64.3.4;2.4 Test Procedure;654
64.3.5;2.5 Presented Tests;655
64.4;3 Data Analysis;656
64.4.1;3.1 Force Analysis;656
64.4.2;3.2 Friction Analysis;658
64.4.3;3.3 Temperature Analysis;660
64.4.4;3.4 Wear Analysis;662
64.5;4 Discussion;666
64.6;5 Conclusion;670
64.7;References;671
65;An Investigation into the Early Life Cycle Wear-Induced Failure of an All-Terrain Vehicle Ball Joint Cotter Pin;673
65.1;Abstract;673
65.2;1 Cotter Pin and Castle Nut Discussion;673
65.3;2 Accident Summary and Investigation;674
65.3.1;2.1 Accident Facts and Summary;674
65.3.2;2.2 Accident Vehicle Investigation;674
65.3.3;2.3 Subsequent Research and Investigation;675
65.4;3 Ball Joint Analysis;677
65.5;4 Exemplar Parts Testing, Results, and Comparisons with the Subject Cotter Pin Pieces;678
65.6;5 Conclusions;682
65.7;References;682
66;In-manufacture Running-in of Engine Components by Using the Triboconditioning® Process;683
66.1;Abstract;683
66.2;1 Introduction;683
66.3;2 Part Preparation and Testing;685
66.4;3 Results and Discussion;685
66.4.1;3.1 Effect of Triboconditioning® on Valve Train Friction and Wear;685
66.4.2;3.2 Effect of Triboconditioning® on Piston-Bore Friction and Wear;689
66.4.3;3.3 Development of Bushingless Connecting Rods via Triboconditioning®;691
66.5;4 Conclusions;692
66.6;References;692
67;Wear Behavior of ZrO2 Particle Reinforced (Fe,Ni) Matrix Composite;694
67.1;Abstract;694
67.2;1 Introduction;694
67.3;2 Experimental;695
67.4;3 Results and Discussion;696
67.4.1;3.1 X-Ray Diffraction (XRD);696
67.4.2;3.2 Density;696
67.4.3;3.3 Wear Properties;697
67.4.4;3.4 Corrosion Behavior;700
67.5;4 Conclusion;701
67.6;References;701
68;Nanoscale Wear of Carbon Overcoat Subjected to Laser Heating in an Inert Gas Environment;703
68.1;Abstract;703
68.2;1 Introduction;703
68.3;2 Experimental;704
68.3.1;2.1 Test Pin and Disk;704
68.3.2;2.2 Experimental Setup [11];705
68.3.3;2.3 Evaluation Method of DLC Wear on the Pin and Magnetic Disk Surfaces;706
68.4;3 Experimental Results and Discussion;706
68.4.1;3.1 In the Case Without Laser Heating;706
68.4.2;3.2 In the Case with Laser Heating;708
68.4.3;3.3 Observation of the DLC Thin Film on the Magnetic Disk Surface After Friction Wear Test;713
68.5;4 Conclusion;715
68.6;Acknowledgment;715
68.7;References;715
69;Wear Simulation Method for Mechanical Seals Under Mixed Lubrication Using Flow Factors;717
69.1;Abstract;717
69.2;1 Introduction;717
69.3;2 Mixed TEHD Lubrication Model;719
69.3.1;2.1 Fluid Mechanics Analysis;719
69.3.2;2.2 Asperity Contact Mechanics Analysis;720
69.3.3;2.3 Thermomechanics Analysis;721
69.3.4;2.4 Force Balance Mechanisms Analysis;721
69.3.5;2.5 Coupling Relationship;722
69.4;3 Wear Mechanisms Analysis and Numerical Algorithm;722
69.4.1;3.1 Wear Mechanisms Analysis;722
69.4.2;3.2 Numerical Algorithm;723
69.5;4 Simulation Studies and Discussions;724
69.5.1;4.1 Effects of Sealed Fluid Pressure;724
69.5.2;4.2 Effects of Rotating Speed;726
69.5.3;4.3 Effects of Roughness;727
69.6;5 Conclusions and Future Work;729
69.7;Acknowledgments;729
69.8;References;729
70;Boride Coating on Titanium Alloys as Biomaterial in Wear and Fretting Applications;731
70.1;Abstract;731
70.2;1 Introduction;731
70.3;2 Materials and Methods;732
70.4;3 Results and Discussion;734
70.4.1;3.1 Microstructure;734
70.4.2;3.2 Morphology and Thickness;734
70.4.3;3.3 Phase Composition;735
70.4.4;3.4 Hardness;736
70.4.5;3.5 Adhesion;736
70.4.6;3.6 Wear;738
70.5;4 Conclusions;741
70.6;Acknowledgments;742
70.7;References;742
71;Wear Behavior of ZTA Reinforced Iron Matrix Composites;744
71.1;Abstract;744
71.2;1 Introduction;744
71.3;2 Experimental Details;745
71.3.1;2.1 Composites Preparation;745
71.3.2;2.2 Sliding Wear Test;747
71.3.3;2.3 Three-Body Abrasive Wear Test;747
71.4;3 Results and Discussion;748
71.4.1;3.1 Microstructure and Properties;748
71.4.2;3.2 Sliding Wear;751
71.4.3;3.3 Three-Body Abrasive Wear Resistance;754
71.5;4 Conclusions;756
71.6;References;757
72;Friction and Wear of Mouthguard Material with a Laser-Textured Surface in Reciprocating Sliding Motion;759
72.1;Abstract;759
72.2;1 Introduction;759
72.3;2 Experimental Apparatus and Procedure;760
72.4;3 Results and Discussion;762
72.4.1;3.1 Effects of Pit Diameter;762
72.4.2;3.2 Effects of Pit Area Ratio;763
72.4.3;3.3 SEM Observations of Wear Processes;765
72.5;4 Conclusions;768
72.6;References;769
73;Effect of Prior Ratcheting Deformation on Low Cycle Fatigue Behaviour of AISI 4340 Steel;771
73.1;Abstract;771
73.2;1 Introduction;771
73.3;2 Experimental Details;772
73.3.1;2.1 Material Selection, Heat Treatment, Basic Metallography and Specimen Design;772
73.3.2;2.2 Ratcheting and Post-ratcheting Low Cycle Fatigue Tests;772
73.4;3 Results and Discussion;773
73.4.1;3.1 Microstructural Analysis;773
73.4.2;3.2 Hardness and Tensile Properties;774
73.4.3;3.3 Ratcheting Behavior Under Varying Stress Ratios;774
73.4.4;3.4 Effect of Previous Ratcheting Deformation on Low Cycle Fatigue Behaviour of the Steel;776
73.5;4 Conclusions;778
73.6;References;778
74;Finite Element Model in Abrasion Analysis for Single-Asperity Scratch Test;780
74.1;Abstract;780
74.2;1 Introduction;780
74.3;2 Material Characterization;781
74.3.1;2.1 Material;781
74.3.2;2.2 Experimental Characterization;781
74.3.3;2.3 Uniaxial Tensile Test;781
74.3.4;2.4 Fracture Tensile Test;783
74.4;3 Material Model Calibration;784
74.4.1;3.1 Finite-Element (FE) Model;784
74.4.2;3.2 Flow Curve Extrapolation;784
74.4.3;3.3 MBW Model Calibration;785
74.5;4 Model Application: Single Asperity Test;787
74.5.1;4.1 Experiments;787
74.5.2;4.2 Simulation;788
74.6;5 Conclusions;790
74.7;Acknowledgements;790
74.8;References;790
75;Analysis of the Fretting Wear Phenomenon on the Surface Coatings of Form-Wound Coil;792
75.1;Abstract;792
75.2;1 Introduction;792
75.3;2 Fretting Wear;793
75.3.1;2.1 Fretting Wear Mechanism;793
75.4;3 Experimental Setup;795
75.5;4 Experimental Results;796
75.5.1;4.1 Experimental Procedure;796
75.6;5 Discussion;799
75.7;6 Conclusions;800
75.8;References;800
76;Tribological and Mechanical Properties of Polyester Based Composites with SiC Particles;801
76.1;Abstract;801
76.2;1 Introduction;801
76.3;2 Experimental Procedure;802
76.3.1;2.1 Materials;802
76.3.2;2.2 Characterization Techniques;802
76.4;3 Results;803
76.5;4 Conclusions;806
76.6;Acknowledgments;806
76.7;References;806
77;Numerical Calculation of Local Adhesive Wear in Machine Elements Under Boundary Lubrication Considering the Surface Roughness;808
77.1;Abstract;808
77.2;1 Introduction;808
77.3;2 Numerical Wear Calculation;810
77.3.1;2.1 Wear Modelling;810
77.3.2;2.2 Local Wear Modelling;811
77.4;3 Calculation Results;812
77.4.1;3.1 Calculation of the Wear Coefficient;812
77.4.2;3.2 Calculation of Wear in Machine Elements;813
77.5;4 Validation;814
77.5.1;4.1 Test Results;814
77.5.2;4.2 Comparison;817
77.6;5 Summary and Outlook;818
77.7;References;818
78;Numerical Investigation and Optimization of Loosening Behavior of Wheel Nuts for Passenger Cars;820
78.1;Abstract;820
78.2;1 Introduction;820
78.3;2 Experiments and Simulations;821
78.4;3 Results and Discussions;822
78.5;4 Conclusions;825
78.6;Acknowledgement;825
78.7;References;825
79;Optimization of Rigidity of Aluminum Alloy Wheels;826
79.1;Abstract;826
79.2;1 Introduction;826
79.3;2 Simulation and Optimization;827
79.4;3 Results and Discussions;828
79.5;4 Conclusions;830
79.6;References;831