Abdel Wahab | Proceedings of the 7th International Conference on Fracture Fatigue and Wear | E-Book | sack.de
E-Book

E-Book, Englisch, 831 Seiten, eBook

Reihe: Lecture Notes in Mechanical Engineering

Abdel Wahab Proceedings of the 7th International Conference on Fracture Fatigue and Wear

FFW 2018, 9-10 July 2018, Ghent University, Belgium
1. Auflage 2018
ISBN: 978-981-13-0411-8
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

FFW 2018, 9-10 July 2018, Ghent University, Belgium

E-Book, Englisch, 831 Seiten, eBook

Reihe: Lecture Notes in Mechanical Engineering

ISBN: 978-981-13-0411-8
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



These proceedings gather a selection of peer-reviewed papers presented at the 7th International Conference on Fracture Fatigue and Wear (FFW 2018), held at Ghent University, Belgium on 9–10 July 2018.The contributions, prepared by international scientists and engineers, cover the latest advances in and innovative applications of fracture mechanics, fatigue of materials, tribology and wear of materials.The book is intended for academics, including graduate students and researchers, as well as industrial practitioners working in the areas of fracture fatigue and wear.
Abdel Wahab Proceedings of the 7th International Conference on Fracture Fatigue and Wear jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1;Preface;6
2;Organisation;8
2.1;Organising Committee;8
2.2;Chairman;8
2.3;Co-chairman;8
2.4;International Scientific Committee;8
3;Contents;10
4;Fracture;17
5;Failure Analysis of a Removable Support of a Cockpit Seat in a STOL Airplane;18
5.1;Abstract;18
5.2;1 Introduction;18
5.3;2 Results and Discussion;20
5.3.1;2.1 Macro Examination;20
5.3.2;2.2 SEM;22
5.3.3;2.3 Microstructure;25
5.3.4;2.4 Micro Hardness Test;26
5.3.5;2.5 Estimated Maximum Forces;27
5.4;3 Conclusions;31
5.5;4 Recommendations;31
5.6;Acknowledgments;32
5.7;References;32
6;Spot Welding Joint’s Fracture Behavior and Fundamental;33
6.1;Abstract;33
6.2;1 Introduction;33
6.3;2 Fracture Mechanics of Spot Welds;34
6.4;3 Modeling and Simulation;35
6.4.1;3.1 Specimen Modeling;35
6.4.2;3.2 Material Properties;35
6.4.3;3.3 Finite Element Analysis Code;35
6.4.4;3.4 Mesh Generation and Boundary Conditions;36
6.5;4 Results and Discussion;36
6.5.1;4.1 Maximum Stresses and Crack Propagation;36
6.6;5 Conclusions;41
6.7;Acknowledgments;41
6.8;References;41
7;Failure and Fracture Analysis of Al-alloy Wheel Rim of a Vehicle;43
7.1;Abstract;43
7.2;1 Introduction and Background Information;43
7.3;2 Experimental Procedure;44
7.4;3 Results and Discussion;45
7.4.1;3.1 Visual Examination and Stereomicroscopy;45
7.4.2;3.2 SEM Fractographic Evaluation;45
7.4.3;3.3 Optical Metallography;45
7.4.4;3.4 SEM/EDS Analysis;47
7.4.5;3.5 Charpy Impact Testing;49
7.5;4 Conclusions;54
7.6;References;55
8;Key Parameters for Fracture Toughness of Particle/Polymer Nanocomposites; Sensitivity Analysis via XFEM Modeling Approach;56
8.1;1 Introduction;56
8.2;2 Numerical Modeling for Fracture of Particle/PNCs;57
8.3;3 Sensitivity Analysis Methods;60
8.3.1;3.1 Regression Method;60
8.3.2;3.2 Elementary Effects;60
8.3.3;3.3 Sobol' Method;60
8.3.4;3.4 Extended Fourier Amplitude Sensitivity Test;61
8.4;4 Results;62
8.5;5 Conclusion;64
8.6;References;64
9;A Criterion for Crack Initiation at Blunt Notches Based on the Concept of Local Strength;67
9.1;Abstract;67
9.2;1 Introduction;67
9.3;2 Problem Statement;69
9.4;3 Fracture Criterion;70
9.5;4 Examples of Fracture Criterion Application;71
9.5.1;4.1 Plate with an Elliptic Hole Under Tension;71
9.5.2;4.2 Infinite Body with Ellipsoidal Hollow Under Tension;72
9.6;5 Comparison Between Predicted and Experimental Data;73
9.6.1;5.1 Plate with a Circular Hole Under Tension;73
9.6.2;5.2 Plate with Lateral Notches Under Tension;73
9.6.3;5.3 Bar with a Circumferential Notch Under Tension;74
9.6.4;5.4 Plate with a Circular Hole Under Compression;75
9.7;6 Conclusions;75
9.8;Acknowledgments;76
9.9;References;76
10;Effect of Friction Coefficient and Maximum Contact Pressure on the Spalling Depth of Gear Teeth Flank;78
10.1;Abstract;78
10.2;1 Introduction;78
10.3;2 Numerical Simulation;79
10.4;3 Results and Discussion;79
10.5;4 Conclusion;82
10.6;References;82
11;Transient Analysis of Multiple Interface Cracks in Two Bonded Elastic and Piezoelectric Layers;84
11.1;Abstract;84
11.2;1 Introduction;84
11.3;2 Formulation of the Problem;85
11.4;3 Derivation of the Integral Equations;88
11.5;4 Results and Discussions;89
11.6;5 Concluding Remarks;91
11.7;References;91
12;A Study on the Constitutive Equation Effects in the Fracture Initiation of AA5450 Sheets;93
12.1;Abstract;93
12.2;1 Introduction;93
12.3;2 Experiments;94
12.4;3 Finite Element Model;94
12.5;4 Results and Discussions;95
12.6;5 Conclusions;97
12.7;References;97
13;Predicting the Failure Type of Liquid Hydrocarbon Pipeline Using Fuzzy Expert System;99
13.1;Abstract;99
13.2;1 Introduction;99
13.3;2 Fuzzy Expert Systems;100
13.4;3 Development of a Fuzzy Logic-Based Failure Model;101
13.4.1;3.1 Data Collection, Filtering and Classification;101
13.4.2;3.2 Fuzzy of Variables and Define Membership Functions;101
13.4.3;3.3 Establishing a Fuzzy Rule Base for FES;103
13.4.4;3.4 Model Implementation;104
13.4.5;3.5 Model Validation;104
13.5;4 Conclusion;104
13.6;References;105
14;Simulation of Loading Rate Effects on Dynamic Brittle Failure of Concrete Structures Using a Two-Scale Damage Model;106
14.1;1 Introduction;106
14.2;2 Dynamic Damage Model;107
14.3;3 Compact Tension Test;108
14.4;4 L-Shaped Specimen Test;110
14.5;5 Conclusions;112
14.6;References;112
15;Deformation Behavior and Fracture of Al-CuZr Nano-Laminates: A Molecular Dynamics Simulation Study;114
15.1;Abstract;114
15.2;1 Introduction;114
15.3;2 Simulation Methodology;115
15.4;3 Results and Discussions;116
15.5;4 Conclusions;119
15.6;References;120
16;Model of Damaged Medium for Describing Fatigue Fracture of Materials and Structures;122
16.1;Abstract;122
16.2;1 Introduction;122
16.3;2 Defining Relations of Mechanics of Damaged Media;124
16.4;3 The Investigation Results;127
16.5;4 Conclusion;137
16.6;Acknowledgements;138
16.7;References;138
17;Modeling of Fatigue Fracture of Coatings in Multi-cycle Friction Contact;140
17.1;Abstract;140
17.2;1 Introduction;140
17.3;2 Problem Formulation and the Method of Solution;141
17.3.1;2.1 Contact Problem Solution;141
17.3.2;2.2 Calculation of Internal Stresses;143
17.3.3;2.3 Model of the Contact Fatigue at the Layer-Substrate Interface;143
17.4;3 Results and Discussion;145
17.5;4 Conclusions;148
17.6;Acknowledgments;148
17.7;References;148
18;Research and Modeling of Stress-Strain State and Fracture Strength of Triplexes at Temperatures 293–213 K;150
18.1;Abstract;150
18.2;1 Introduction;150
18.3;2 Materials and Methods;153
18.3.1;2.1 Test Samples and Materials;153
18.3.2;2.2 Modeling of the Adhesion Processes and the Triplex Separate Layers Fracture in the Presence of Crack-Like Defects;154
18.3.3;2.3 Measurements;156
18.3.4;2.4 Methodology to Determine Stresses;157
18.4;3 Experimental Results;158
18.5;4 Analysis of the Experimental Results of Studies of Stress-Strain and Boundary States of the Triplex in the Temperature Range 293–213 K;160
18.6;5 Numerical Modeling of the Framing Influence on the SIF of Surface Cracks;161
18.6.1;5.1 Modeling Conditions;161
18.6.2;5.2 Numerical Results and Discussion;162
18.7;6 Conclusions;163
18.8;References;164
19;Influence of Low Temperature on Mechanical Properties of Carbon Steel P110 Estimated by Means of Small Punch Test;166
19.1;Abstract;166
19.2;1 Introduction;166
19.3;2 Experimental Methodology;168
19.4;3 Results and Discussion;170
19.5;4 Summary;176
19.6;Acknowledgements;177
19.7;References;177
20;Crack Propagation in Various Double Cantilever Beam Geometric Configurations;179
20.1;Abstract;179
20.2;1 Introduction;179
20.3;2 Procedures and Methodology Used;180
20.3.1;2.1 Williams Power Series;180
20.3.2;2.2 Over-Deterministic Method (ODM);180
20.4;3 Cracked Geometry, Numerical Model, ODM, MTS Criterion;181
20.4.1;3.1 Investigated Cracked Geometry;181
20.4.2;3.2 Numerical Model in ANSYS;181
20.4.3;3.3 ODM Procedure;182
20.4.4;3.4 MTS Criterion Evaluation;182
20.5;4 Results and Discussion;182
20.6;5 Conclusion;184
20.7;Acknowledgements;184
20.8;References;184
21;Lateral Indentation and Impact Analyses on Curved Composite Shells;186
21.1;1 Introduction;186
21.2;2 Materials and Methods;187
21.2.1;2.1 Experimental Setup and Testing;188
21.2.2;2.2 Numerical Analyses;189
21.3;3 Results and Discussion;191
21.3.1;3.1 Sensitivity Analysis on the Hashin Parameters;193
21.4;4 Conclusions;197
21.5;References;198
22;Structured Learning-Based Sinusoidal Modelling for Gear Diagnosis and Prognosis;199
22.1;Abstract;199
22.2;1 Introduction;199
22.3;2 Problem Formulation;200
22.4;3 The Structured Learning Based Sinusoidal Modelling;203
22.5;4 Performance Investigation;204
22.6;5 Conclusion;207
22.7;References;207
23;Singular Stress Field of Interfacial Small Crack in Orthotropic Bonded Plate;209
23.1;Abstract;209
23.2;1 Introduction;209
23.3;2 Singular Stress Field of Interface Edge;210
23.3.1;2.1 Definition of Stress Intensity Factor;210
23.4;3 Method of Analysis;211
23.4.1;3.1 Analysis Condition;211
23.4.2;3.2 Determination of Stress Intensity Factor;212
23.5;4 Numerical Results and Discussions;212
23.5.1;4.1 Expression of Stress Intensity Factor of Small Edge Interface Crack;212
23.5.2;4.2 Effect of Material Combination;213
23.6;5 Conclusions;215
23.7;References;216
24;Comparative Research on Calculation Methods of Stress Intensity Factors and Crack Propagation Criterion;217
24.1;Abstract;217
24.2;1 Introduction;217
24.3;2 Calculation Methods of Stress Intensity Factor;218
24.4;3 Calculation Methods of Crack Propagation Criterion;220
24.5;4 Conclusions;224
24.6;Acknowledgements;224
24.7;References;224
25;Crack Identification Using eXtended IsoGeometric Analysis and Particle Swarm Optimization;225
25.1;Abstract;225
25.2;1 Introduction;225
25.3;2 Motivation and X-IGA Approach in Forward Problem;226
25.3.1;2.1 A Brief of B-Spline/NURBS Functions;227
25.3.2;2.2 XIGA Implementation;227
25.4;3 Particle Swarm Optimization (PSO);229
25.5;4 Numerical Results;231
25.5.1;4.1 Cracked Plate - Scenario 1;231
25.5.2;4.2 Cracked Plate - Scenario 2;231
25.5.3;4.3 Cracked Plate - Scenario 3;233
25.5.4;4.4 Cracked Plate - Scenario 4;234
25.6;5 Conclusion;236
25.7;References;236
26;Fatigue;238
27;PWR Fatigue Testing at SCK•CEN in the Framework of INCEFA+;239
27.1;Abstract;239
27.2;1 Introduction;239
27.3;2 Material;240
27.4;3 Specimen;240
27.5;4 Environment;242
27.6;5 Fatigue Testing;242
27.7;6 Extensometers;244
27.8;7 Test Result;244
27.9;8 Discussion of Test Results;252
27.10;9 Conclusion;253
27.11;Acknowledgments;254
27.12;References;254
28;The Effect of Technological and Structural Factors on the Strength of Polyethylene Adhesive Joints;255
28.1;Abstract;255
28.2;1 Introduction;256
28.3;2 Methodology;257
28.3.1;2.1 Adherend;257
28.3.2;2.2 Surface Treatment;257
28.3.3;2.3 Adhesives;258
28.3.4;2.4 Adhesive Joints;259
28.3.5;2.5 Strength Tests and Statistical Analysis;260
28.4;3 Results;261
28.4.1;3.1 Results of Adhesive Joints Strength;261
28.4.2;3.2 Statistical Results of Adhesive Joints Strength;262
28.4.3;3.3 Elongation at Break of Adhesive Joints;264
28.4.4;3.4 Failure Patterns of Adhesive Joints;266
28.4.5;3.5 Results Discussion;268
28.5;4 Conclusions;269
28.6;References;270
29;Compression of Strain Load History Using Holder Exponents of Continuous Wavelet Transform;272
29.1;Abstract;272
29.2;1 Introduction;273
29.3;2 Theoretical Background;274
29.3.1;2.1 Singularities Detection with Holder Exponents;274
29.4;3 Methodology;275
29.4.1;3.1 Strain Signal Acquisition;276
29.4.2;3.2 Continuous Wavelet Transform and Lipschitz Regularity Analysis;276
29.4.3;3.3 Compression of Strain Time Histories and Fatigue Life Prediction;278
29.5;4 Results and Discussion;280
29.5.1;4.1 Continuous Wavelet Transform of Time History;280
29.5.2;4.2 Comparison of Lipschitz-Based and Time-Domain-Based FDE Techniques;281
29.6;5 Conclusions;285
29.7;Acknowledgements;286
29.8;References;286
30;Structural Optimization for the Gusset Plate in the Boom Structure of Concrete Pump Truck;287
30.1;Abstract;287
30.2;1 Introduction;287
30.3;2 General Introduction of CPT;288
30.3.1;2.1 Configuration of CPT;288
30.3.2;2.2 Loading Characterization;289
30.3.3;2.3 Gusset Plate;290
30.3.4;2.4 Representative of Region and Loading for Optimization;292
30.4;3 Design Of Experiment (DOE);294
30.4.1;3.1 Design Process;294
30.4.2;3.2 Conceptual Design;294
30.4.3;3.3 Detailed Design;296
30.5;4 Conclusion;298
30.6;Acknowledgement;299
30.7;References;299
31;Failure Analysis of Prematurely Failed Hip Joint Implant Inside the Femur Bone;300
31.1;Abstract;300
31.2;1 Introduction;300
31.3;2 Experimental;302
31.3.1;2.1 Material;302
31.3.2;2.2 Method;303
31.4;3 Results and Discussion;304
31.4.1;3.1 Hardness and Bend Test;304
31.4.2;3.2 Chemical Analysis Test;304
31.4.3;3.3 Stereo Zoom and Optical Microscopy;305
31.4.4;3.4 SEM-EDS Analysis;306
31.5;4 Conclusions;308
31.6;Acknowledgements;308
31.7;References;309
32;Comparative Study of Defect-Based and Plastic Damage-Based Approaches for Fatigue Lifetime Calculation of Selective Laser-Melted AlSi12;311
32.1;Abstract;311
32.2;1 Introduction;311
32.3;2 Materials and Methods;314
32.3.1;2.1 Experimental Setup;314
32.3.2;2.2 Theory and Calculations;319
32.4;3 Results and Discussion;321
32.5;4 Conclusions and Outlook;324
32.6;Acknowledgements;325
32.7;References;325
33;Fatigue Damage of Waterwall Tubes in a 1000 MW USC Boiler;328
33.1;Abstract;328
33.2;1 Introduction;328
33.3;2 Description of the Boiler;329
33.4;3 Results and Discussion;330
33.4.1;3.1 Visual Observation;330
33.4.2;3.2 Chemical Analysis;330
33.4.3;3.3 Mechanical Properties;330
33.4.4;3.4 Microstructural Observation;331
33.4.5;3.5 Cracks and Fracture Analysis;331
33.4.6;3.6 EDS and XRD Phase Analysis;333
33.4.7;3.7 Root Cause Analysis;336
33.5;4 Conclusions and Recommendations;337
33.6;Acknowledgements;338
33.7;References;338
34;Fatigue of Steels Used in the Manufacture of Components for Heavy Load Vehicles;339
34.1;Abstract;339
34.2;1 Introduction;339
34.3;2 Experimental Procedure;341
34.4;3 Results and Discussion;343
34.5;4 Conclusions;348
34.6;Acknowledgements;348
34.7;References;349
35;Specimen Thickness Effects on Front Edge Shape of Fatigue Crack in Al7075-T6 Alloy;350
35.1;Abstract;350
35.2;1 Introduction;350
35.3;2 Material, Specimen and Experimental Procedures;351
35.4;3 Results and Discussion;352
35.4.1;3.1 Curvature Radius of Fatigue Crack Front Edge;352
35.4.2;3.2 Change in the Plastic Zone Size in the Specimen Thickness Direction;354
35.5;4 Conclusion;357
35.6;References;357
36;Finite Lifetime Estimation of Mechanical Assemblies Subjected to Fretting Fatigue Loading;359
36.1;Abstract;359
36.2;1 Introduction;359
36.3;2 The MWCM to Estimate Fatigue Life Under CA Multiaxial Fatigue Loading;360
36.4;3 The TCD Approach;362
36.5;4 Estimation of Stress Quantities Relative to the Critical Plane Under CA Multiaxial Loading;363
36.6;5 Formalization of the Design Methodology to Estimate Finite Lifetime of Mechanical Assemblies Under CA Fretting Fatigue Loading;364
36.7;6 Validation with Experimental Data;366
36.8;7 Results and Discussion;369
36.9;8 Conclusion;370
36.10;Acknowledgment;370
36.11;References;371
37;Probabilistic Modeling of Coating Delamination;373
37.1;Abstract;373
37.2;1 Problem Formulation and Resulting Equations;374
37.2.1;1.1 Discontinuous Solutions for Coated Half-Plane with Interface Cracks;375
37.2.2;1.2 J-Integrals and Stress Intensity Factors at Interface Crack Tips;377
37.3;2 Probabilistic Model of Cyclic Coating Delamination;378
37.4;3 Some Numerical Results;380
37.5;4 Conclusions;383
37.6;References;384
38;Failure of Giant Wheel Ride at an Amusement Park;385
38.1;Abstract;385
38.2;1 Introduction;385
38.3;2 The Parameters of the Central Shaft;387
38.4;3 Metallurgical Analysis;387
38.5;4 Structural/Stress Analysis;389
38.6;5 Conclusions;391
38.7;References;391
39;Thermal-Mechanical Fatigue Analysis of a Main Steam Isolation Valve of a Boiling Water Reactor-5;393
39.1;Abstract;393
39.2;1 Introduction;393
39.3;2 Statement of the Problem;394
39.4;3 Materials and Methods;395
39.5;4 Results;399
39.6;5 Conclusions;401
39.7;Acknowledgement;402
39.8;References;402
40;Influence of Soft Particle Peening Treatment on Fatigue Strength of Aluminum Alloy A5052;404
40.1;Abstract;404
40.2;1 Introduction;404
40.3;2 Influence of Hardness on Surface Modification Effect [13];405
40.3.1;2.1 Experimental Method;405
40.3.2;2.2 Result of Extent of Wear and Vickers Hardness;406
40.4;3 Influence of Soft Resin Particle Peening on Fatigue Strength Characteristics of Aluminum Alloy A5052;407
40.4.1;3.1 Material and Experimental Procedure;407
40.4.2;3.2 Influence on Hardness Distribution, Surface Roughness and Residual Stress;408
40.4.3;3.3 Influence on Fatigue Strength;410
40.4.4;3.4 Consideration by Impact Energy;411
40.5;4 Conclusions;413
40.6;References;413
41;Fatigue Life Calculation of Load-Adapted Hybrid Angular Contact Ball Bearings;415
41.1;Abstract;415
41.2;1 Introduction;415
41.3;2 Method of Calculation;416
41.3.1;2.1 Input Parameters;417
41.3.2;2.2 FE Model;420
41.3.3;2.3 Calculation of Bearing Fatigue Life;421
41.4;3 Calculational Results;423
41.5;4 Conclusion and Outlook;427
41.6;Acknowledgments;427
41.7;References;427
42;The Influence of Hydrogen on Fatigue Fracture in Mooring Chain Steel;429
42.1;Abstract;429
42.2;1 Introduction;429
42.3;2 Experimental Procedure and Methods;430
42.3.1;2.1 Materials;430
42.3.2;2.2 Microscopic Observation;430
42.3.3;2.3 Mechanical Tests;431
42.3.4;2.4 Methods;431
42.4;3 Results;431
42.5;4 Discussion;436
42.6;5 Conclusions;439
42.7;Acknowledgements;439
42.8;References;439
43;Monitoring Micro-damage Evolution in Structural Steel S355 Using Speckle Interferometry;441
43.1;Abstract;441
43.2;1 Introduction;441
43.3;2 Basics on Fatigue Damage and Metrology;441
43.3.1;2.1 Stages of Cyclic Damage;441
43.3.2;2.2 Experimental Background on Damage Assessment;442
43.3.3;2.3 Fundamentals of Speckle Interferometry;443
43.4;3 Experimental Methods and Materials;444
43.5;4 Measurement Results;446
43.6;5 Summary and Outlook;450
43.7;Acknowledgment;450
43.8;References;450
44;On an Extension of the Fatemi and Socie Equation for Rolling Contact in Rolling Bearings;452
44.1;Abstract;452
44.2;1 Introduction;453
44.3;2 Theory and Description;455
44.3.1;2.1 Critical Plane Criterion of Fatemi and Socie;455
44.3.2;2.2 Determination of Shear Strain Amplitude and Normal Stress;457
44.4;3 Application to Rolling Contact;459
44.4.1;3.1 Configuration;459
44.4.2;3.2 Influence of the Normal Stress in the Critical Plane;461
44.5;4 Simulations Results;464
44.5.1;4.1 Critical Plane Orientation and Location;465
44.5.2;4.2 Crack Initiation Lifetime Calculation in the Approach A1 and A2;466
44.5.3;4.3 Comparison with Standard DIN ISO 281;468
44.6;5 Conclusion;469
44.7;References;470
45;Durability of Steel Joints with Ductile Adhesive Subjected to Fatigue Tests;472
45.1;Abstract;472
45.2;1 Introduction;472
45.3;2 Experimental;473
45.4;3 Results and Discussion;474
45.5;4 Conclusions;477
45.6;References;477
46;Effect of an Adhesive Bonding on the Fatigue Life of Advanced High Strength Steel Spot-Welds;478
46.1;Abstract;478
46.2;1 Introduction;478
46.3;2 Specimen Preparation;479
46.4;3 Test Results and Discussion;480
46.4.1;3.1 Thickness Dependence of the Joint Strength;480
46.4.2;3.2 Sheet Strength Dependence of the Joint Strength;486
46.5;4 Conclusions;492
46.6;Acknowledgement;493
46.7;References;493
47;Fatigue Life Predictions for L-Shaped Cracks;494
47.1;Abstract;494
47.2;1 Introduction;494
47.3;2 Methodology and Formulation;495
47.3.1;2.1 Normal Crack Front Advance;495
47.3.2;2.2 Length Advance;498
47.4;3 Results and Discussion;498
47.4.1;3.1 Normal Crack Front Advance;498
47.4.2;3.2 Length Advance;502
47.5;4 Conclusions;503
47.6;Acknowledgements;503
47.7;References;503
48;Modelling of Short Crack Arrest and Fatigue Propagation Using Non-local Fracture Criteria;505
48.1;Abstract;505
48.2;1 Introduction;505
48.3;2 Non-local Fracture Criteria;506
48.4;3 Dugdale’s Crack Model;507
48.5;4 Fatigue Growth of the Short Cracks;508
48.6;5 Arrest of the Short Cracks;510
48.7;6 Conclusions;512
48.8;References;512
49;Critical Analysis of Randomly Rough Surfaces for Contact Mechanics Through Statistical Simulation;514
49.1;Abstract;514
49.2;1 Introduction;514
49.3;2 Simulation Methods;516
49.4;3 Simulations and Simulation Results;519
49.5;4 Discussion;522
49.6;5 Conclusions;524
49.7;Acknowledgements;524
49.8;References;524
50;Panel Test for New Developed Airbus A321 ACF Overwing Door and Surrounding Structure;526
50.1;Abstract;526
50.2;1 Introduction into the A321neo ACF Project;526
50.3;2 Influence of Design on Verification and Validation Needs;527
50.4;3 Test Scenario;527
50.5;4 Description of Chosen Test Set-up;530
50.6;5 Specimen Adaptation to Test Needs;531
50.7;6 Test Program;531
50.8;7 Conclusion;533
50.9;Acknowledgement;534
50.10;References;534
51;Strain Rate Concentration Factor for Round and Flat Test Specimens;535
51.1;Abstract;535
51.2;1 Introduction;535
51.3;2 Definition of Strain Rate Concentration Factor;536
51.4;3 Strain Rate Concentration for the Round and Flat Specimen;537
51.5;4 Relationship Between the Strain Rate Concentration Factor and the Stress Concentration Factor;538
51.6;5 Conclusion;541
51.7;References;542
52;A Comparison Between Critical-Plane and Stress-Invariant Approaches for the Prediction of Fretting Fatigue Crack Nucleation;544
52.1;Abstract;544
52.2;1 Introduction;544
52.3;2 Theoretical Background;545
52.3.1;2.1 Critical Plane Approach;545
52.3.2;2.2 Stress Invariant Approach;546
52.4;3 Experimental Data;546
52.5;4 Methodology;547
52.5.1;4.1 Nucleation Life;547
52.5.2;4.2 Propagation Life;548
52.6;5 Results;548
52.6.1;5.1 Comparison of Initiation Location;548
52.6.2;5.2 Comparison of Fretting Fatigue Life;549
52.7;6 Conclusions;550
52.8;Acknowledgement;551
52.9;References;551
53;Effect of Short Crack Behavior on the Propagation Life Prediction for a Fretting Cylindrical Pad Configuration;553
53.1;Abstract;553
53.2;1 Introduction;553
53.3;2 Numerical Analysis;554
53.3.1;2.1 Finite Element Model;554
53.3.2;2.2 Life Predictions;556
53.4;3 Results;557
53.5;4 Conclusions;559
53.6;Acknowledgements;559
53.7;References;559
54;Simulation of Cyclic Deformation Behavior of Ferritic P92 Steel Based on Unified Viscoplastic Model;561
54.1;Abstract;561
54.2;1 Introduction;561
54.3;2 Experimental Procedure;562
54.4;3 Experimental Results and Discussion;563
54.5;4 Simulation of LCF and CFI Deformation;565
54.5.1;4.1 Constitutive Model;565
54.5.2;4.2 Determination of Material Parameters;566
54.5.3;4.3 Simulation Results and Discussion;567
54.6;5 Conclusion;569
54.7;Acknowledgements;569
54.8;References;569
55;Fatigue Life Analysis of Un-repaired and Repaired Metallic Substrate Using FRANC2D;572
55.1;Abstract;572
55.2;1 Introduction;572
55.3;2 Materials and Methodology;573
55.3.1;2.1 Materials;573
55.3.2;2.2 Modelling in FRANC2D/L;574
55.4;3 Results and Discussion;575
55.5;4 Conclusions;578
55.6;Acknowledgements;578
55.7;References;578
56;Wear;580
57;Effect of Cryosoaking Period on Soft Tempering Temperature and Wear Mechanism in AISI H11 Tool Steel;581
57.1;Abstract;581
57.2;1 Introduction;581
57.3;2 Experimental Procedures;582
57.3.1;2.1 Material Selection;582
57.3.2;2.2 Heat Treatment and Cryogenic Treatment;582
57.3.3;2.3 Hardness Test;583
57.3.4;2.4 Wear Test;583
57.3.5;2.5 Metallography;584
57.4;3 Results and Discussion;584
57.4.1;3.1 Hardness Variation;584
57.4.2;3.2 Morphology of Carbides;584
57.4.3;3.3 Wear Mechanism;585
57.4.4;3.4 Standardization of Soft Tempering Temperature;589
57.5;4 Conclusions;592
57.6;References;592
58;Dry Wear Behavior of Basalt/Carbon-Reinforced Epoxy Composite by Taguchi Method;593
58.1;Abstract;593
58.2;1 Introduction;593
58.3;2 Materials;595
58.3.1;2.1 Experimental Design;595
58.3.2;2.2 Wear Tests;596
58.4;3 Results and Discussion;596
58.4.1;3.1 Analysis of Weight Loss;596
58.4.2;3.2 Anova;599
58.5;4 Conclusions;600
58.6;References;600
59;Wear Property of Epoxy Reinforced with Carbon Using a Response Surface Methodology;603
59.1;Abstract;603
59.2;1 Introduction;603
59.3;2 Materials;605
59.3.1;2.1 Experimental Design;605
59.3.2;2.2 Wear Tests;606
59.4;3 Results and Discussion;606
59.4.1;3.1 Weight Loss;606
59.4.2;3.2 Anova;608
59.4.3;3.3 Regression Analysis;611
59.4.4;3.4 Optimization of Responses;611
59.5;4 Conclusions;612
59.6;References;612
60;Microabrasive Wear of Titanium Chrome Plated;614
60.1;Abstract;614
60.2;1 Introduction;614
60.3;2 Methods;615
60.3.1;2.1 Electrolytic Chromium Deposit;615
60.3.2;2.2 Testing Equipment;615
60.3.3;2.3 Test Method;616
60.3.4;2.4 Characteristics of the Specimens;617
60.3.5;2.5 Hardness Evaluation;618
60.3.6;2.6 Wear Tests of the Uncoated Specimens of Titanium;618
60.3.7;2.7 Wear Tests of the Titanium Specimens Coated with Chrome;619
60.4;3 Discussion;621
60.5;4 Conclusions;624
60.6;References;625
61;Experimental Investigate of the Wear and Friction Performance Considering Effects of Surface Topography and Lubricant;627
61.1;Abstract;627
61.2;1 Introduction;627
61.3;2 Effects of Surface Topography;628
61.4;3 Effects of Lubricant Characteristics;629
61.5;4 Conclusion;631
61.6;Acknowledgments;632
61.7;References;632
62;Experimental Simulation and Analysis of Die Casting Mould Wear;633
62.1;Abstract;633
62.2;1 Introduction;633
62.3;2 Prototype Wear Testing Equipment;633
62.4;3 Experimental Work;635
62.4.1;3.1 Samples;635
62.4.2;3.2 Experiment Parameters;635
62.4.3;3.3 Results and Analysis;636
62.5;4 Conclusion;638
62.6;Acknowledgements;638
62.7;References;638
63;Structure and Properties of the New Antifriction Composite Materials for High-Temperature Friction Units;640
63.1;Abstract;640
63.2;1 Introduction;640
63.3;2 Experimental Procedure;642
63.4;3 Conclusion;648
63.5;References;648
64;Comprehension of Thermomechanical Phenomena and Material Behavior During High Speed Contact;650
64.1;Abstract;650
64.2;1 Introduction;650
64.3;2 Contact Interaction at ENIT;652
64.3.1;2.1 Presentation of the Test Device;652
64.3.2;2.2 Test Device Instrumentation;653
64.3.3;2.3 Contact Pieces and Contact Geometry;653
64.3.4;2.4 Test Procedure;654
64.3.5;2.5 Presented Tests;655
64.4;3 Data Analysis;656
64.4.1;3.1 Force Analysis;656
64.4.2;3.2 Friction Analysis;658
64.4.3;3.3 Temperature Analysis;660
64.4.4;3.4 Wear Analysis;662
64.5;4 Discussion;666
64.6;5 Conclusion;670
64.7;References;671
65;An Investigation into the Early Life Cycle Wear-Induced Failure of an All-Terrain Vehicle Ball Joint Cotter Pin;673
65.1;Abstract;673
65.2;1 Cotter Pin and Castle Nut Discussion;673
65.3;2 Accident Summary and Investigation;674
65.3.1;2.1 Accident Facts and Summary;674
65.3.2;2.2 Accident Vehicle Investigation;674
65.3.3;2.3 Subsequent Research and Investigation;675
65.4;3 Ball Joint Analysis;677
65.5;4 Exemplar Parts Testing, Results, and Comparisons with the Subject Cotter Pin Pieces;678
65.6;5 Conclusions;682
65.7;References;682
66;In-manufacture Running-in of Engine Components by Using the Triboconditioning® Process;683
66.1;Abstract;683
66.2;1 Introduction;683
66.3;2 Part Preparation and Testing;685
66.4;3 Results and Discussion;685
66.4.1;3.1 Effect of Triboconditioning® on Valve Train Friction and Wear;685
66.4.2;3.2 Effect of Triboconditioning® on Piston-Bore Friction and Wear;689
66.4.3;3.3 Development of Bushingless Connecting Rods via Triboconditioning®;691
66.5;4 Conclusions;692
66.6;References;692
67;Wear Behavior of ZrO2 Particle Reinforced (Fe,Ni) Matrix Composite;694
67.1;Abstract;694
67.2;1 Introduction;694
67.3;2 Experimental;695
67.4;3 Results and Discussion;696
67.4.1;3.1 X-Ray Diffraction (XRD);696
67.4.2;3.2 Density;696
67.4.3;3.3 Wear Properties;697
67.4.4;3.4 Corrosion Behavior;700
67.5;4 Conclusion;701
67.6;References;701
68;Nanoscale Wear of Carbon Overcoat Subjected to Laser Heating in an Inert Gas Environment;703
68.1;Abstract;703
68.2;1 Introduction;703
68.3;2 Experimental;704
68.3.1;2.1 Test Pin and Disk;704
68.3.2;2.2 Experimental Setup [11];705
68.3.3;2.3 Evaluation Method of DLC Wear on the Pin and Magnetic Disk Surfaces;706
68.4;3 Experimental Results and Discussion;706
68.4.1;3.1 In the Case Without Laser Heating;706
68.4.2;3.2 In the Case with Laser Heating;708
68.4.3;3.3 Observation of the DLC Thin Film on the Magnetic Disk Surface After Friction Wear Test;713
68.5;4 Conclusion;715
68.6;Acknowledgment;715
68.7;References;715
69;Wear Simulation Method for Mechanical Seals Under Mixed Lubrication Using Flow Factors;717
69.1;Abstract;717
69.2;1 Introduction;717
69.3;2 Mixed TEHD Lubrication Model;719
69.3.1;2.1 Fluid Mechanics Analysis;719
69.3.2;2.2 Asperity Contact Mechanics Analysis;720
69.3.3;2.3 Thermomechanics Analysis;721
69.3.4;2.4 Force Balance Mechanisms Analysis;721
69.3.5;2.5 Coupling Relationship;722
69.4;3 Wear Mechanisms Analysis and Numerical Algorithm;722
69.4.1;3.1 Wear Mechanisms Analysis;722
69.4.2;3.2 Numerical Algorithm;723
69.5;4 Simulation Studies and Discussions;724
69.5.1;4.1 Effects of Sealed Fluid Pressure;724
69.5.2;4.2 Effects of Rotating Speed;726
69.5.3;4.3 Effects of Roughness;727
69.6;5 Conclusions and Future Work;729
69.7;Acknowledgments;729
69.8;References;729
70;Boride Coating on Titanium Alloys as Biomaterial in Wear and Fretting Applications;731
70.1;Abstract;731
70.2;1 Introduction;731
70.3;2 Materials and Methods;732
70.4;3 Results and Discussion;734
70.4.1;3.1 Microstructure;734
70.4.2;3.2 Morphology and Thickness;734
70.4.3;3.3 Phase Composition;735
70.4.4;3.4 Hardness;736
70.4.5;3.5 Adhesion;736
70.4.6;3.6 Wear;738
70.5;4 Conclusions;741
70.6;Acknowledgments;742
70.7;References;742
71;Wear Behavior of ZTA Reinforced Iron Matrix Composites;744
71.1;Abstract;744
71.2;1 Introduction;744
71.3;2 Experimental Details;745
71.3.1;2.1 Composites Preparation;745
71.3.2;2.2 Sliding Wear Test;747
71.3.3;2.3 Three-Body Abrasive Wear Test;747
71.4;3 Results and Discussion;748
71.4.1;3.1 Microstructure and Properties;748
71.4.2;3.2 Sliding Wear;751
71.4.3;3.3 Three-Body Abrasive Wear Resistance;754
71.5;4 Conclusions;756
71.6;References;757
72;Friction and Wear of Mouthguard Material with a Laser-Textured Surface in Reciprocating Sliding Motion;759
72.1;Abstract;759
72.2;1 Introduction;759
72.3;2 Experimental Apparatus and Procedure;760
72.4;3 Results and Discussion;762
72.4.1;3.1 Effects of Pit Diameter;762
72.4.2;3.2 Effects of Pit Area Ratio;763
72.4.3;3.3 SEM Observations of Wear Processes;765
72.5;4 Conclusions;768
72.6;References;769
73;Effect of Prior Ratcheting Deformation on Low Cycle Fatigue Behaviour of AISI 4340 Steel;771
73.1;Abstract;771
73.2;1 Introduction;771
73.3;2 Experimental Details;772
73.3.1;2.1 Material Selection, Heat Treatment, Basic Metallography and Specimen Design;772
73.3.2;2.2 Ratcheting and Post-ratcheting Low Cycle Fatigue Tests;772
73.4;3 Results and Discussion;773
73.4.1;3.1 Microstructural Analysis;773
73.4.2;3.2 Hardness and Tensile Properties;774
73.4.3;3.3 Ratcheting Behavior Under Varying Stress Ratios;774
73.4.4;3.4 Effect of Previous Ratcheting Deformation on Low Cycle Fatigue Behaviour of the Steel;776
73.5;4 Conclusions;778
73.6;References;778
74;Finite Element Model in Abrasion Analysis for Single-Asperity Scratch Test;780
74.1;Abstract;780
74.2;1 Introduction;780
74.3;2 Material Characterization;781
74.3.1;2.1 Material;781
74.3.2;2.2 Experimental Characterization;781
74.3.3;2.3 Uniaxial Tensile Test;781
74.3.4;2.4 Fracture Tensile Test;783
74.4;3 Material Model Calibration;784
74.4.1;3.1 Finite-Element (FE) Model;784
74.4.2;3.2 Flow Curve Extrapolation;784
74.4.3;3.3 MBW Model Calibration;785
74.5;4 Model Application: Single Asperity Test;787
74.5.1;4.1 Experiments;787
74.5.2;4.2 Simulation;788
74.6;5 Conclusions;790
74.7;Acknowledgements;790
74.8;References;790
75;Analysis of the Fretting Wear Phenomenon on the Surface Coatings of Form-Wound Coil;792
75.1;Abstract;792
75.2;1 Introduction;792
75.3;2 Fretting Wear;793
75.3.1;2.1 Fretting Wear Mechanism;793
75.4;3 Experimental Setup;795
75.5;4 Experimental Results;796
75.5.1;4.1 Experimental Procedure;796
75.6;5 Discussion;799
75.7;6 Conclusions;800
75.8;References;800
76;Tribological and Mechanical Properties of Polyester Based Composites with SiC Particles;801
76.1;Abstract;801
76.2;1 Introduction;801
76.3;2 Experimental Procedure;802
76.3.1;2.1 Materials;802
76.3.2;2.2 Characterization Techniques;802
76.4;3 Results;803
76.5;4 Conclusions;806
76.6;Acknowledgments;806
76.7;References;806
77;Numerical Calculation of Local Adhesive Wear in Machine Elements Under Boundary Lubrication Considering the Surface Roughness;808
77.1;Abstract;808
77.2;1 Introduction;808
77.3;2 Numerical Wear Calculation;810
77.3.1;2.1 Wear Modelling;810
77.3.2;2.2 Local Wear Modelling;811
77.4;3 Calculation Results;812
77.4.1;3.1 Calculation of the Wear Coefficient;812
77.4.2;3.2 Calculation of Wear in Machine Elements;813
77.5;4 Validation;814
77.5.1;4.1 Test Results;814
77.5.2;4.2 Comparison;817
77.6;5 Summary and Outlook;818
77.7;References;818
78;Numerical Investigation and Optimization of Loosening Behavior of Wheel Nuts for Passenger Cars;820
78.1;Abstract;820
78.2;1 Introduction;820
78.3;2 Experiments and Simulations;821
78.4;3 Results and Discussions;822
78.5;4 Conclusions;825
78.6;Acknowledgement;825
78.7;References;825
79;Optimization of Rigidity of Aluminum Alloy Wheels;826
79.1;Abstract;826
79.2;1 Introduction;826
79.3;2 Simulation and Optimization;827
79.4;3 Results and Discussions;828
79.5;4 Conclusions;830
79.6;References;831


Prof Magd Abdel Wahab is a full time Professor of Applied Mechanics in the Faculty of Engineering and Architecture at Ghent University, Belgium and an adjunct professor of computational mechanics at Ton Duc Thang University, Vietnam. He received his B.Sc., 1988, in Civil Engineering and his M.Sc., 1991, in Structural Mechanics, both from Cairo University. Prof. Wahab completed his Ph.D. in Fracture Mechanics in 1995 at KU Leuven, Belgium. He was awarded the degree of Doctor of Science from the University of Surrey in 2008. He has published more than 320 scientific papers in solid mechanics and dynamics of structures and edited more than 12 books and proceedings. His research interests include fracture mechanics, damage mechanics, fatigue of materials, durability, and dynamics and vibration of structures.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.