Abraham / Hassanien | Foundations of Computational Intelligence | Buch | 978-3-642-01087-3 | sack.de

Buch, Englisch, Band 204, 396 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1660 g

Reihe: Studies in Computational Intelligence

Abraham / Hassanien

Foundations of Computational Intelligence

Volume 4: Bio-Inspired Data Mining
1. Auflage 2009
ISBN: 978-3-642-01087-3
Verlag: Springer

Volume 4: Bio-Inspired Data Mining

Buch, Englisch, Band 204, 396 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1660 g

Reihe: Studies in Computational Intelligence

ISBN: 978-3-642-01087-3
Verlag: Springer


Foundations of Computational Intelligence Volume 4: Bio-Inspired Data Mining Theoretical Foundations and Applications Recent advances in the computing and electronics technology, particularly in sensor devices, databases and distributed systems, are leading to an exponential growth in the amount of data stored in databases. It has been estimated that this amount doubles every 20 years. For some applications, this increase is even steeper. Databases storing DNA sequence, for example, are doubling their size every 10 months. This growth is occurring in several applications areas besides bioinformatics, like financial transactions, government data, environmental mo- toring, satellite and medical images, security data and web. As large organizations recognize the high value of data stored in their databases and the importance of their data collection to support decision-making, there is a clear demand for - phisticated Data Mining tools. Data mining tools play a key role in the extraction of useful knowledge from databases. They can be used either to confirm a parti- lar hypothesis or to automatically find patterns. In the second case, which is - lated to this book, the goal may be either to describe the main patterns present in dataset, what is known as descriptive Data Mining or to find patterns able to p- dict behaviour of specific attributes or features, known as predictive Data Mining. While the first goal is associated with tasks like clustering, summarization and association, the second is found in classification and regression problems.
Abraham / Hassanien Foundations of Computational Intelligence jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Bio-Inspired Approaches in Sequence and Data Streams.- Adaptive and Self-adaptive Techniques for Evolutionary Forecasting Applications Set in Dynamic and Uncertain Environments.- Sequence Pattern Mining.- Growing Self-Organizing Map for Online Continuous Clustering.- Synthesis of Spatio-temporal Models by the Evolution of Non-uniform Cellular Automata.- Bio-Inspired Approaches in Classification Problem.- Genetic Selection Algorithm and Cloning for Data Mining with GMDH Method.- Inducing Relational Fuzzy Classification Rules by Means of Cooperative Coevolution.- Post-processing Evolved Decision Trees.- Evolutionary Fuzzy and Swarm in Clustering Problems.- Evolutionary Fuzzy Clustering: An Overview and Efficiency Issues.- Stability-Based Model Order Selection for Clustering Using Multiple Cooperative Particle Swarms.- Genetic and Evolutionary Algorithms in Bioinformatics.- Data-Mining Protein Structure by Clustering, Segmentation and Evolutionary Algorithms.- A Clustering Genetic Algorithm for Genomic Data Mining.- Detection of Remote Protein Homologs Using Social Programming.- Bio-Inspired Approaches in Information Retrieval and Visualization.- Optimizing Information Retrieval Using Evolutionary Algorithms and Fuzzy Inference System.- Web Data Clustering.- Efficient Construction of Image Feature Extraction Programs by Using Linear Genetic Programming with Fitness Retrieval and Intermediate-Result Caching.- Mining Network Traffic Data for Attacks through MOVICAB-IDS.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.