E-Book, Englisch, 182 Seiten, eBook
Ackerman / Barash / Farchi Theory and Practice of Quality Assurance for Machine Learning Systems
Erscheinungsjahr 2024
ISBN: 978-3-031-70008-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
An Experiment-Driven Approach
E-Book, Englisch, 182 Seiten, eBook
ISBN: 978-3-031-70008-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
1. Introduction.- 2. Scientific Analysis of ML Systems.- 3. Motivation and Best Practices for Machine Learning Designers and Testers.- 4. Unit Test vs. System Test of ML Based Systems.- 5. ML Testing.- 6. Principles of Drift Detection and ML Solution Retraining.- 7. Drift Detection by Measuring Distribution Differences.- 8. Sequential Drift Detection.- 9. Drift in Characterizations of Data.- 10. A Framework Analysis for Alternating Components and Drift.- 11. Optimal Integration of the ML Solution in the Business Decision Process.- 12. Testing Solutions Based on Large Language Models.- 13. A Detailed Chatbot Example.