E-Book, Englisch, Band 539, 620 Seiten, eBook
Andò / Baldini / Scalise Sensors
1. Auflage 2019
ISBN: 978-3-030-04324-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the Fourth National Conference on Sensors, February 21-23, 2018, Catania, Italy
E-Book, Englisch, Band 539, 620 Seiten, eBook
Reihe: Lecture Notes in Electrical Engineering
ISBN: 978-3-030-04324-7
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;Chemical Sensors;16
4;Low Temperature NO2 Sensor Based on YCoO3 and TiO2 Nanoparticle Composites;17
4.1;1 Introduction;17
4.2;2 Sensors and Characterization;18
4.2.1;2.1 Sensor Preparation;18
4.2.2;2.2 Sensor Characterization;19
4.3;3 Conclusions;21
4.4;References;24
5;Effect of Humidity on the Hydrogen Sensing in Graphene Based Devices;25
5.1;1 Introduction;25
5.1.1;1.1 Material Preparation;26
5.1.2;1.2 Material Characterization;26
5.1.3;1.3 Sensing Characterization;26
5.2;2 Conclusions;29
5.3;References;30
6;A Networked Wearable Device for Chemical Multisensing;31
6.1;1 Introduction;32
6.2;2 The Environmental Sensors;32
6.3;3 Test Platform with NO2 Gas Sensors;33
6.4;4 Sensing Material Deposition on UCL Microarrays;36
6.5;5 Conclusions;36
6.6;References;38
7;High Performance VOCs Sensor Based on ?-Fe2O3/Al-ZnO Nanocomposites;39
7.1;1 Introduction;39
7.2;2 Experimental;40
7.2.1;2.1 Samples Preparation;40
7.2.2;2.2 Morphological, Microstructural and Sensing Properties;41
7.3;3 Results and Discussion;41
7.3.1;3.1 Metal Oxides Characterization;41
7.3.2;3.2 Acetone Sensing Tests;42
7.4;4 Conclusions;44
7.5;References;44
8;Electrochemical Sensor Based on Molybdenum Oxide Nanoparticles for Detection of Dopamine;45
8.1;1 Introduction;45
8.2;2 Materials and Methods;47
8.3;3 Results and Discussion;48
8.4;4 Summary;51
8.5;References;52
9;Sensing Properties of Indium, Tin and Zinc Oxides for Hexanal Detection;53
9.1;1 Introduction;53
9.2;2 Experimental;54
9.2.1;2.1 Samples Preparation and Characterization;54
9.2.2;2.2 Sensor Preparation and Testing;54
9.3;3 Results and Discussion;55
9.3.1;3.1 Metal Oxides Characterization;55
9.3.2;3.2 Hexanal Detection Measurements;56
9.4;4 Conclusions;58
9.5;References;58
10;On-Glass Integration of Thin Film Devices for Monitoring of Cell Bioluminescence;59
10.1;1 Introduction;59
10.2;2 System Structure and Operation;60
10.2.1;2.1 Heater and a-Si:H Sensor Design;62
10.3;3 Fabrication and Characterization;62
10.4;4 Conclusions;64
10.5;References;65
11;Yeast-DMFC Device Using Glucose as Fuel: Analytical and Energetic Applications. Preliminary Results;66
11.1;1 Introduction;66
11.2;2 Materials and Methods;67
11.3;3 Results and Discussion;68
11.4;4 Conclusions;70
11.5;References;71
12;YCoO3 Resistive Gas Sensors for the Detection of NO2 in ‘Resistance Controlled Mode’;73
12.1;1 Introduction;73
12.2;2 Measurement Technique and Measurement System;74
12.3;3 Experimental Results;76
12.4;4 Conclusions;78
12.5;References;80
13;Monitoring Shelf Life of Carrots with a Peptides Based Electronic Nose;81
13.1;1 Introduction;81
13.2;2 Materials and Methods;82
13.3;3 Results and Discussion;83
13.4;4 Conclusions;85
13.5;References;85
14;An Innovative Optical Chem-Sensor Based on a Silicon Photomultipliers for the Sulfide Monitoring;87
14.1;1 Introduction;88
14.2;2 Materials and Methods;89
14.2.1;2.1 Chemicals;89
14.2.2;2.2 Silicon Photomultipliers;89
14.2.3;2.3 Sulfide Water Samples Collection;90
14.3;3 Results and Discussion;90
14.4;4 Conclusions;92
14.5;References;93
15;Samarium Oxide as a Novel Sensing Material for Acetone and Ethanol;94
15.1;1 Introduction;94
15.2;2 Experimental;95
15.3;3 Results and Discussion;95
15.4;4 Conclusion;97
15.5;References;98
16;Crowdfunding for Increased Awareness Crowd-Sensing: A Technical Account;99
16.1;1 Introduction;99
16.2;2 Crowdfunding Campaign;101
16.3;3 Monica 2.0 Multi-sensor Device;102
16.3.1;3.1 Sensor Node;102
16.3.2;3.2 Data Acquisition System;103
16.3.3;3.3 Back-End;103
16.3.4;3.4 Front-End;105
16.3.5;3.5 Calibration Procedures;107
16.4;4 Crowd Sensing Campaign;108
16.5;5 Conclusions;110
16.6;References;110
17;Biosensors;112
18;Nickel Based Biosensor for Biomolecules Recognition;113
18.1;1 Introduction;113
18.2;2 Materials and Methods;114
18.2.1;2.1 Chemicals;114
18.2.2;2.2 Electrochemical Measurements;114
18.2.3;2.3 Saliva Sample and Pre-treatment;114
18.3;3 Results and Discussion;115
18.4;4 Conclusions;116
18.5;References;116
19;Electrochemical DNA-Based Sensor for Organophosphorus Pesticides Detection;118
19.1;1 Introduction;118
19.2;2 Materials and Methods;119
19.3;3 Results;120
19.4;4 Conclusions;122
19.5;References;122
20;A Novel Lab-on-Disk System for Pathogen Nucleic Acids Analysis in Infectious Diseases;123
20.1;1 Introduction;123
20.2;2 Materials and Methods;126
20.2.1;2.1 Chemicals and Reagents;126
20.2.2;2.2 Extraction Experiments;126
20.2.3;2.3 Real Time Amplification on the Chip;126
20.3;3 Results and Discussions;127
20.3.1;3.1 Module for DNA Extraction;127
20.3.2;3.2 Module for DNA Detection;127
20.4;4 Conclusions;128
20.5;References;129
21;Diamond-Based Multi Electrode Arrays for Monitoring Neurotransmitter Release;131
21.1;1 Introduction;132
21.2;2 µG-SCD MEA Microfabrication;132
21.3;3 Electrical Characterizations;135
21.4;4 Measurements of Quantal Dopamine Release;137
21.5;5 Conclusion;138
21.6;References;138
22;Ultrasensitive Non-enzymatic Electrochemical Glucose Sensor Based on NiO/CNT Composite;141
22.1;1 Introduction;141
22.2;2 Experimental;142
22.2.1;2.1 Preparation of NiO/SCCNT Composites;142
22.2.2;2.2 Electrode Preparation;142
22.3;3 Result and Discussion;143
22.3.1;3.1 TEM;143
22.3.2;3.2 Electrochemical Behavior of Glucose at CNT/NiO Modified Electrode;143
22.4;4 Conclusion;145
22.5;References;146
23;A Silicon-Based Biosensor for Bacterial Pathogens Detection;147
23.1;1 Introduction;147
23.2;2 Materials and Methods;148
23.2.1;2.1 Chemicals and Biological Reagents;148
23.2.2;2.2 Biosensor Description;148
23.3;3 Results and Discussion;149
23.3.1;3.1 Sample Processing and Detection;149
23.3.2;3.2 Real-Time PCR Experiments;149
23.4;4 Conclusion;150
23.5;References;151
24;M13 Bacteriophages as Bioreceptors in Biosensor Device;152
24.1;1 Introduction;153
24.2;2 Materials and Methods;153
24.2.1;2.1 Bacteriophages;153
24.2.2;2.2 Functionalization of Magnetic and Latex Beads;154
24.2.3;2.3 Binding of Phage to Polymeric Surface and Capture of Bacteria Target;154
24.3;3 Results and Discussion;155
24.4;4 Conclusions;159
24.5;References;159
25;One-Step Functionalization of Silicon Nanoparticles with Phage Probes to Identify Pathogenic Bacteria;161
25.1;1 Introduction;162
25.2;2 Results and Discussion;163
25.3;3 Conclusions;166
25.4;References;166
26;FITC-Labelled Clone from Phage Display for Direct Detection of Leukemia Cells in Blood;168
26.1;1 Introduction;169
26.2;2 Materials and Methods;170
26.2.1;2.1 Bacteriophage;170
26.2.2;2.2 Phage Labelling with FITC;170
26.2.3;2.3 Sample Preparation for Fluorescence Imaging;171
26.3;3 Results and Discussions;171
26.4;4 Conclusions;174
26.5;References;175
27;Organised Colloidal Metal Nanoparticles for LSPR Refractive Index Transducers;176
27.1;1 Introduction;176
27.2;2 Experimental;177
27.2.1;2.1 Preparation of Gold Nanoparticles;177
27.2.2;2.2 Deposition of Colloidal Gold Particles on Silanised Glass Substrate;178
27.2.3;2.3 Characterization Techniques;178
27.3;3 Results;179
27.4;4 Conclusions;182
27.5;References;182
28;Human Organ-on-a-Chip: Around the Intestine Bends;183
28.1;1 Introduction;184
28.2;2 Materials and Methods;186
28.3;3 Results and Discussions;187
28.4;References;189
29;Portable Optoelectronic System for Monitoring Enzymatic Chemiluminescent Reaction;191
29.1;1 Introduction;192
29.2;2 System Structure and Operation;192
29.3;3 System Fabrication;193
29.4;4 Test of the System;195
29.5;5 Conclusions;196
29.6;References;196
30;A Novel Paper-Based Biosensor for Urinary Phenylalanine Measurement for PKU Therapy Monitoring;197
30.1;1 Introduction;197
30.2;2 Materials and Methods;198
30.2.1;2.1 Chemicals;198
30.2.2;2.2 Instrumentation;198
30.3;3 Results and Discussion;199
30.3.1;3.1 Biosensor;199
30.3.2;3.2 Phenylalanine Detection Strategy;199
30.3.3;3.3 Detection Strategy Optimization and Chromatic-Scale;200
30.3.4;3.4 Phenylalanine Detection on Human Sample;201
30.4;4 Conclusion;202
30.5;References;202
31;Physical Sensors;203
32;Magnetoencephalography System Based on Quantum Magnetic Sensors for Clinical Applications;204
32.1;1 Introduction;205
32.2;2 Magnetic Sensors;205
32.3;3 Magnetoencephalography System;207
32.4;4 MEG Acquisition and Test Measurements;208
32.5;5 Conclusions;209
32.6;References;210
33;Calibration System for Multi-sensor Acoustical Systems;211
33.1;1 Introduction;212
33.2;2 Problem Statement;212
33.2.1;2.1 Acoustic Antenna Calibration;213
33.2.2;2.2 Experiment Setup;214
33.3;3 Experiment Result;216
33.4;4 Conclusions;220
33.5;References;220
34;Pyroelectric Sensor for Characterization of Biological Cells;222
34.1;1 Introduction;222
34.2;2 Matherials and Methods;223
34.3;3 Results;224
34.4;4 Conclusion;226
34.5;References;226
35;Characterization of a TMR Sensor for EC-NDT Applications;228
35.1;1 Introduction;229
35.2;2 TMR Sensor Performance Evaluation;230
35.3;3 Uncertainty Evaluation;231
35.4;4 Conclusions;234
35.5;References;234
36;Thermal, Mechanical and Electrical Investigation of Elastomer-Carbon Black Nanocomposite Piezoresistivity;236
36.1;1 Introduction;237
36.2;2 The Composite Synthesis and the Thermal Characterization;237
36.2.1;2.1 Thermogravimetric Analysis (TGA) of the Obtained Composites;239
36.2.2;2.2 Mechanical Dynamic Analysis (DMA) of the Obtained Composites;240
36.3;3 Investigation of the Composite Piezoresistivity;240
36.3.1;3.1 The Measuring System for Piezoresistivity Investigation;241
36.3.2;3.2 The Experimental Results;242
36.4;4 The Viscoelastic Characterization of the Composites;244
36.4.1;4.1 Description of the Testing Machine;244
36.4.2;4.2 The Testing Procedure Acquisition;246
36.4.3;4.3 Results of the Relaxation Phase;248
36.5;References;249
37;Optical Sensors;250
38;Polishing Process Analysis for Surface Plasmon Resonance Sensors in D-Shaped Plastic Optical Fibers;251
38.1;1 Introduction;251
38.2;2 Optical Sensor Configurations;252
38.3;3 Experimental Results;253
38.4;4 Conclusions;254
38.5;References;255
39;A Molecularly Imprinted Polymer on a Novel Surface Plasmon Resonance Sensor;256
39.1;1 Introduction;256
39.2;2 Plasmonic Platform;257
39.3;3 Experimental Results;258
39.4;4 Conclusions;259
39.5;References;259
40;Design of a Label-Free Multiplexed Biosensing Platform Based on an Ultracompact Plasmonic Resonant Cavity;260
40.1;1 Introduction;260
40.2;2 Design;261
40.3;3 Conclusions;264
40.4;References;264
41;A Novel Intensity-Based Sensor Platform for Refractive Index Sensing;265
41.1;1 Introduction;265
41.2;2 Optical Sensor System;266
41.3;3 Experimental Results;266
41.4;4 Conclusions;268
41.5;References;268
42;An Optical Sensing System for Atmospheric Particulate Matter;270
42.1;1 Introduction;270
42.2;2 Proposed Architecture;272
42.3;3 Results;275
42.4;4 Conclusions;276
42.5;References;276
43;Performances Evaluation of the Optical Techniques Developed and Used to Map the Velocities Vectors of Radioactive Dust;278
43.1;1 Introduction;278
43.2;2 Materials and Methods;279
43.2.1;2.1 STARDUST-Upgrade;279
43.2.2;2.2 Optical Measurement of Velocity;280
43.3;3 Results and Discussion;283
43.3.1;3.1 Fluid-Dynamics Characterisation of the Experiments;283
43.3.2;3.2 Algorithm Performance Analysis;283
43.3.3;3.3 Result Discussion;286
43.4;4 Conclusions;286
43.5;References;288
44;Printed and Flexible Sensors;289
45;Low Cost Inkjet Printed Sensors: From Physical to Chemical Sensors;290
45.1;1 Introduction;290
45.2;2 State of the Art;292
45.3;3 Inkjet Printed Sensors Application Examples;294
45.3.1;3.1 CO2 Gas Sensors;294
45.3.2;3.2 Accelerometer;297
45.4;4 Conclusions;299
45.5;References;300
46;DNA-Based Biosensor on Flexible Nylon Substrate by Dip-Pen Lithography for Topoisomerase Detection;302
46.1;1 Introduction;303
46.1.1;1.1 Flexible Devices;303
46.1.2;1.2 Printed Biosensor for Topoisomerase Detection;303
46.2;2 Experimental Aspects;304
46.2.1;2.1 Materials;304
46.2.2;2.2 Fabrication Protocol;304
46.2.3;2.3 Biosensor Assembly;305
46.3;3 Conclusions and Future Perspectives;308
46.4;References;309
47;Aerosol Jet Printed Sensors for Protein Detection: A Preliminary Study;310
47.1;1 Introduction;310
47.1.1;1.1 AJP: Introduction and Functioning Principle;311
47.2;2 Materials and Methods;312
47.2.1;2.1 Sensors Design and Fabrication;312
47.2.2;2.2 Sensors Testing;314
47.3;3 Results;316
47.3.1;3.1 Geometrical Analysis;316
47.3.2;3.2 Electrical Analysis;316
47.3.3;3.3 Fluorescence Imaging;317
47.3.4;3.4 Protein Quantification;318
47.4;4 Conclusions;318
47.5;References;319
48;Novel Coplanar Capacitive Force Sensor for Biomedical Applications: A Preliminary Study;321
48.1;1 Introduction;322
48.1.1;1.1 State of the Art;322
48.1.2;1.2 Coplanar Capacitors;322
48.2;2 Sensor Fabrication and Preliminary Tests;324
48.2.1;2.1 Sensor Fabrication Process;324
48.2.2;2.2 Sensor Preliminary Test;325
48.3;3 Conclusions;327
48.4;References;327
49;Graphene-Like Based-Chemiresistors Inkjet-Printed onto Paper Substrate;329
49.1;1 Introduction;329
49.2;2 Experimental;330
49.3;3 Results and Discussion;331
49.4;4 Conclusion;334
49.5;References;335
50;Carbon Black as Electrode Modifier in Prussian Blue Electrodeposition for H2O2 Sensing;336
50.1;1 Introduction;336
50.2;2 Materials and Methods;337
50.2.1;2.1 Materials;337
50.2.2;2.2 Instrumentation;337
50.2.3;2.3 Preparation of SPE-PB and SPE-CB-PB Electrodes;337
50.3;3 Results and Discussion;338
50.4;4 Conclusions;340
50.5;References;340
51;Sensing Systems;342
52;PPG/ECG Multisite Combo System Based on SiPM Technology;343
52.1;1 Introduction;344
52.2;2 Experimental Setup;346
52.3;3 Data Analysis;347
52.4;4 Conclusions;349
52.5;References;350
53;A Small Footprint, Low Power, and Light Weight Sensor Node and Dedicated Processing for Modal Analysis;351
53.1;1 Introduction;351
53.2;2 Sensor Node;353
53.3;3 Modal Estimation;354
53.3.1;3.1 Natural Frequency Estimation;354
53.3.2;3.2 Modal Shapes Reconstruction;356
53.4;4 Conclusions;359
53.5;References;360
54;IEEE 21451-001 Signal Treatment Applied to Smart Transducers;361
54.1;1 Introduction;361
54.2;2 Standard Structure;362
54.2.1;2.1 Sampling of Sensor Signals;362
54.2.2;2.2 Standard Proposed Algorithms;364
54.2.3;2.3 Second Layer Algorithms;364
54.3;3 Conclusions;365
54.4;References;366
55;Accuracy and Metrological Characteristics of Wearable Devices: A Systematic Review;367
55.1;1 Introduction;367
55.2;2 Materials and Methods;368
55.3;3 Results;369
55.3.1;3.1 Wrist-Worn Monitors;369
55.3.2;3.2 Chest-Strap Devices;373
55.4;4 Discussion and Conclusion;374
55.5;References;375
56;Short Range Positioning Using Ultrasound Techniques;378
56.1;1 Introduction;378
56.2;2 The Positioning System;379
56.2.1;2.1 System Architecture;379
56.2.2;2.2 System Operation;379
56.3;3 Experimental Results;381
56.3.1;3.1 Experimental Setup;381
56.3.2;3.2 Experimental Results;384
56.4;4 Conclusions;387
56.5;References;387
57;Estimating the Outdoor PM10 Concentration Through Wireless Sensor Network for Smart Metering;388
57.1;1 Introduction;388
57.2;2 The System Under Test;389
57.3;3 The Feasibility Study;391
57.4;References;392
58;Machine Learning Techniques to Select a Reduced and Optimal Set of Sensors for the Design of Ad Hoc Sensory Systems;394
58.1;1 Introduction;394
58.2;2 Materials and Methods;395
58.2.1;2.1 Data Pre-processing;396
58.2.2;2.2 Feature Selection and Classification Algorithms;397
58.3;3 Results;398
58.4;4 Discussion;401
58.5;5 Conclusions;403
58.6;References;403
59;Multi-sensor Platform for Automatic Assessment of Physical Activity of Older Adults;406
59.1;1 Introduction;406
59.2;2 Materials and Methods;408
59.2.1;2.1 Platform Overview;408
59.2.2;2.2 Ambient Sensor and Relative Framework for Activity Recognition Task;409
59.2.3;2.3 Wearable Sensor and Relative Framework for Activity Recognition Task;410
59.2.4;2.4 Methodology for Automatic Assessment of Physical Activity;412
59.3;3 Results and Discussion;413
59.4;4 Conclusion;415
59.5;References;415
60;Failure Modes and Mechanisms of Sensors Used in Oil&Gas Applications;417
60.1;1 Introduction;417
60.2;2 Sensors in Oil&Gas Application;419
60.3;3 Failure Modes and Failure Mechanism of Sensors;420
60.4;4 Diagnostic in Oil&Gas Safety Sensors;422
60.5;5 Conclusions;423
60.6;References;423
61;Lab-on-Disk Platform for KRAS Mutation Testing;425
61.1;1 Introduction;425
61.2;2 Materials and Methods;427
61.3;3 Results;429
61.4;4 Discussion;430
61.5;5 Conclusion;430
61.6;References;431
62;Study Toward the Integration of a System for Bacterial Growth Monitoring in an Automated Specimen Processing Platform;433
62.1;1 Introduction;433
62.2;2 Materials and Methods;435
62.2.1;2.1 The Measuring System;435
62.2.2;2.2 Study Setup and Protocol;436
62.3;3 Preliminary Results;438
62.3.1;3.1 Double Layer Capacitance CDL;438
62.3.2;3.2 Charge Transfer Resistance RCT;439
62.3.3;3.3 Medium Resistance RM;439
62.4;4 Conclusions;441
62.5;References;442
63;A Virtual ANN-Based Sensor for IFD in Two-Wheeled Vehicle;443
63.1;1 Introduction;443
63.2;2 The Two-Wheeled Vehicle Under Test;445
63.3;3 The Virtual Sensor;446
63.4;4 The IFD Scheme;447
63.5;5 Conclusions;450
63.6;References;450
64;A Smart Breath Analyzer for Monitoring Home Mechanical Ventilated Patients;452
64.1;1 Introduction;453
64.2;2 Smart Breath Analyzer;453
64.2.1;2.1 Rationale;453
64.2.2;2.2 Architecture;454
64.2.3;2.3 Preliminary Test;456
64.3;3 Conclusions;457
64.4;References;457
65;A Nonlinear Pattern Recognition Pipeline for PPG/ECG Medical Assessments;459
65.1;1 Introduction;459
65.2;2 Materials and Methods;461
65.3;3 Results and Discussion;461
65.4;4 Conclusion;464
65.5;References;466
66;Electronic System for Structural and Environmental Building Monitoring;467
66.1;1 Motivation;467
66.2;2 Proposed Monitoring System;468
66.3;3 Test Case: Example of Application;469
66.4;References;473
67;Closed-Loop Temperature Control CMOS Integrated Circuit for Diagnostics and Self-calibration of Capacitive Humidity Sensors;475
67.1;1 Introduction;475
67.2;2 Temperature Control System Circuit;476
67.3;3 Experimental Measurements;477
67.4;4 Conclusions;479
67.5;References;481
68;An UAV Mounted Intelligent Monitoring System for Impromptu Air Quality Assessments;482
68.1;1 Introduction;483
68.2;2 Methodology: The Tethered Air Quality Drone Architecture;483
68.2.1;2.1 Payload Part 1: MONICA Multisensor Node;484
68.2.2;2.2 Payload Part 2: IoT Processing Unit;485
68.2.3;2.3 UAV Platform;486
68.3;3 Experimental Results: First Flight Session;487
68.4;4 Conclusions;490
68.5;References;490
69;Sensors Applications;492
70;Fluxgate Magnetometer and Performance for Measuring Iron Compounds;493
70.1;1 Introduction;494
70.2;2 Measurement Method and Experimental Setup;494
70.3;3 Experimental Results;497
70.4;4 Conclusion;500
70.5;References;501
71;Micro Doppler Radar and Depth Sensor Fusion for Human Activity Monitoring in AAL;502
71.1;1 Introduction;502
71.2;2 Materials and Methods;503
71.2.1;2.1 Sensors and Data Acquisition Setups;503
71.2.2;2.2 Test Protocol and Dataset Collection;505
71.2.3;2.3 Fall Detection Algorithm;507
71.3;3 Experimental Results;509
71.4;4 Conclusion;510
71.5;References;511
72;Characterization of Human Semen by GC-MS and VOC Sensor: An Unexplored Approach to the Study on Infertility;512
72.1;1 Introduction;513
72.2;2 Materials and Methods;514
72.3;3 Results;514
72.4;4 Discussion;515
72.5;5 Conclusions;518
72.6;References;519
73;A Novel Technique to Characterize Conformational State of the Proteins: p53 Analysis;520
73.1;1 Introduction;520
73.2;2 Methodology;522
73.2.1;2.1 Sample Preparation;522
73.2.2;2.2 Spectrophotometer Testing;522
73.3;3 Result;523
73.4;4 Discussions;524
73.5;5 Conclusion;526
73.6;References;526
74;Electrical Energy Harvesting from Pot Plants;528
74.1;1 Plant Microbial Fuel Cell;528
74.2;2 Description of the System and Preliminary Measurements;530
74.3;3 Electronic Harvesting Circuit and Improved Measurements;531
74.4;4 Conclusions;533
74.5;References;533
75;Preliminary Study on Wearable System for Multiple Finger Tracking;534
75.1;1 Introduction;534
75.2;2 Description of the System;535
75.3;3 Experimental Study;538
75.4;4 Conclusions;540
75.5;References;541
76;Giraff Meets KOaLa to Better Reason on Sensor Networks;542
76.1;1 Introduction;543
76.2;2 Sensor-Based Applications and Knowledge Extraction;544
76.2.1;2.1 The GiraffPlus Research Project;545
76.2.2;2.2 Data Needs Semantics;545
76.3;3 KOaLa: Knowledge-Based Continuous Loop;546
76.3.1;3.1 A Context-Based Ontological Approach;547
76.3.2;3.2 Linking Knowledge Processing and Planning;549
76.4;4 KOaLa and Giraff Working Together;550
76.5;5 Final Remarks and Future Developments;551
76.6;References;551
77;Smart Insole for Diabetic Foot Monitoring;553
77.1;1 Introduction;553
77.2;2 Smart Insole System;555
77.3;3 Results;557
77.4;4 Conclusion;558
77.5;References;558
78;Identification of Users’ Well-Being Related to External Stimuli: A Preliminary Investigation;560
78.1;1 Introduction;560
78.2;2 Materials and Methods;561
78.3;3 Experimental Setup;562
78.3.1;3.1 Participants and Trials;563
78.3.2;3.2 Data Processing and Features Extraction;564
78.4;4 Analysis of Results;566
78.5;5 Conclusions;568
78.6;References;569
79;Smart Transducers for Energy Scavenging and Sensing in Vibrating Environments;572
79.1;1 Introduction;572
79.2;2 Theory of Operation;574
79.3;3 Experimental Setup;575
79.4;4 Results and Discussion;575
79.5;5 Conclusion;578
79.6;References;579
80;RMSHI Solutions for Electromagnetic Transducers from Environmental Vibration;580
80.1;1 Introduction;581
80.2;2 Working Principle;582
80.3;3 Experimental Setup;583
80.4;4 Results and Discussion;583
80.5;5 Conclusion;587
80.6;References;587
81;Characterization of Sensorized Porous 3D Gelatin/Chitosan Scaffolds Via Bio-impedance Spectroscopy;589
81.1;1 Introduction;590
81.2;2 Materials and Methods;591
81.2.1;2.1 Scaffold Preparation;591
81.2.2;2.2 Experimental Setup and Measurement Protocols for Bio-impedance Spectroscopy;592
81.3;3 Result and Discussion;592
81.3.1;3.1 Bio-impedance Measurement;592
81.3.2;3.2 Electrical Conductivity Analysis;593
81.4;4 Conclusion;594
81.5;References;595
82;Fast Multi-parametric Method for Mechanical Properties Estimation of Clamped—Clamped Perforated Membranes;598
82.1;1 Introduction;599
82.2;2 Fabrication and Mechanical Characterization;600
82.2.1;2.1 Fabrication of CCFF Perforated Membranes;600
82.2.2;2.2 Mechanical Properties of the Structural Tri-layer;600
82.3;3 Deflection Model of a Perforated Membrane;601
82.4;4 Measurements and Results;602
82.5;5 Conclusions;604
82.6;References;605
83;Improvement of the Frequency Behavior of an EC-NDT Inspection System;607
83.1;1 Introduction;608
83.2;2 Some Theoretical Notes to the Resonance Condition in an EC-NDT Probe;608
83.3;3 Some Theoretical Notes on the Double Resonant Circuit;611
83.4;4 First Experimental Results;613
83.5;5 Conclusion;615
83.6;References;615
84;Author Index;617