Appice / Loglisci / Ras | New Frontiers in Mining Complex Patterns | Buch | 978-3-319-78679-7 | sack.de

Buch, Englisch, 197 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 330 g

Reihe: Lecture Notes in Artificial Intelligence

Appice / Loglisci / Ras

New Frontiers in Mining Complex Patterns

6th International Workshop, NFMCP 2017, Held in Conjunction with ECML-PKDD 2017, Skopje, Macedonia, September 18-22, 2017, Revised Selected Papers
1. Auflage 2018
ISBN: 978-3-319-78679-7
Verlag: Springer Nature Switzerland

6th International Workshop, NFMCP 2017, Held in Conjunction with ECML-PKDD 2017, Skopje, Macedonia, September 18-22, 2017, Revised Selected Papers

Buch, Englisch, 197 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 330 g

Reihe: Lecture Notes in Artificial Intelligence

ISBN: 978-3-319-78679-7
Verlag: Springer Nature Switzerland


This book features a collection of revised and significantly extended versions of the papers accepted for presentation at the 6th International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2017, held in conjunction with ECML-PKDD 2017 in Skopje, Macedonia, in September 2017. The book is composed of five parts: feature selection and induction; classification prediction; clustering; pattern discovery; applications.

The workshop was aimed at discussing and introducing new algorithmic foundations and representation formalisms in complex pattern discovery. Finally, it encouraged the integration of recent results from existing fields, such as Statistics, Machine Learning and Big Data Analytics.

Appice / Loglisci / Ras New Frontiers in Mining Complex Patterns jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Learning Association Rules for Pharmacogenomic Studies.- Segment-Removal Based Stuttered Speech Remediation.- Identifying lncRNA-disease Relationships via Heterogeneous Clustering.- Density Estimators for Positive-Unlabeled Learning.- Combinatorial Optimization Algorithms to Mine a Sub-Matrix of Maximal Sum.- A Scaled-Correlation Based Approach for Defining and analyzing functional networks.- Complex Localization in the Multiple Instance Learning Context.- Integrating a Framework for Discovering Alternative App Stores in a Mobile App Monitoring Platform.- Usefulness of Unsupervised Ensemble Learning Methods for Time Series Forecasting of Aggregated or Clustered Load.- Phenotype Prediction with Semi-supervised Classification Trees.- Structuring the Output Space in Multi-label Classification by Using Feature Ranking.- Infinite Mixtures of Markov Chains.- Community-based Semantic Subgroup Discovery.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.