Arghandeh / Zhou | Big Data Application in Power Systems | Buch | 978-0-12-811968-6 | sack.de

Buch, Englisch, 480 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 930 g

Arghandeh / Zhou

Big Data Application in Power Systems


Erscheinungsjahr 2017
ISBN: 978-0-12-811968-6
Verlag: William Andrew Publishing

Buch, Englisch, 480 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 930 g

ISBN: 978-0-12-811968-6
Verlag: William Andrew Publishing


Big Data Application in Power Systems brings together experts from academia, industry and regulatory agencies who share their understanding and discuss the big data analytics applications for power systems diagnostics, operation and control. Recent developments in monitoring systems and sensor networks dramatically increase the variety, volume and velocity of measurement data in electricity transmission and distribution level. The book focuses on rapidly modernizing monitoring systems, measurement data availability, big data handling and machine learning approaches to process high dimensional, heterogeneous and spatiotemporal data. The book chapters discuss challenges, opportunities, success stories and pathways for utilizing big data value in smart grids.
Arghandeh / Zhou Big Data Application in Power Systems jetzt bestellen!

Zielgruppe


<p>Engineers, scientists, professionals future electric grid, researchers, graduate students, lecturers in electricity network and smart grid area, data analysis experts, developers in electricity networks and advanced technologies for smart grids,</p>

Weitere Infos & Material


SECTION 1 Harness the Big Data From Power Systems 1. A Holistic Approach to Becoming a Data-Driven Utility 2. Emerging Security and Data Privacy Challenges for Utilities: Case Studies and Solutions 3. The Role of Big Data and Analytics in Utility Innovation 4. Frameworks for Big Data Integration, Warehousing, and Analytics 

SECTION 2 Harness the Power of Big data 5. Moving Toward Agile Machine Learning for Data Analytics in Power Systems 6. Unsupervised Learning Methods for Power System Data Analysis 7. Deep Learning for Power System Data Analysis 8. Compressive Sensing for Power System Data Analysis  9. Time-Series Classification Methods: Review and Applications to Power Systems Data

SECTION 3 Put the Power of Big Data into Power Systems 10. Future Trends for Big Data Application in Power Systems 11. On Data-Driven Approaches for Demand Response 12. Topology Learning in Radial Distribution Grids 13. Grid Topology Identification via Distributed Statistical Hypothesis Testing 14. Supervised Learning-Based Fault Location in Power Grids 15. Data-Driven Voltage Unbalance Analysis in Power Distribution Networks 16. Predictive Analytics for Comprehensive Energy Systems State Estimation 17. Data Analytics for Energy Disaggregation: Methods and Applications 18. Energy Disaggregation and the Utility-Privacy Tradeoff


Zhou, Yuxun
Yuxun Zhou received his B.S. degree in electrical engineering from Xi'an Jiaotong University, Xi'an, China, in 2009, the Diplome d'Ingénieur degree in applied mathematics from École Centrale Paris, Paris, France, in 2012, and a Ph.D. degree from the Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA, USA, in 2017. He has been an author on over 60 research articles and conference proceedings published in peer-reviewed journals. Dr Zhou's research interests include statistical learning theory and paradigms for modern information-rich, large-scale, and human-involved systems.

Arghandeh, Reza
Prof. Reza Arghandeh is the Director of Connectivity, Information & Intelligence Lab (Ci2Lab.com) and a Full Professor in Data Science and Machine Learning in the Department of Computer Science, Electrical Engineering, and Mathematical Sciences at the Western Norway University of Applied Sciences (HVL), Bergen, Norway. He is also the HVL Data Science Group (HVL.no/ai). Additionally, he is a Research Professor in the Electrical and Computer Department at Florida State University, USA, where he was an assistant professor from 2015 to 2018. Prior to FSU, he was a postdoctoral scholar at the University of California, Berkeley, EECS Dept 2013-2015. His research interests include data analysis and decision support for smart grids and smart cities. His research has been supported by IBM, the U.S. National Science Foundation, the U.S. Department of Energy, the European Space Agency, the European Commission, and the Research Council of Norway.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.