Balderjahn / Mathar / Schader | Classification, Data Analysis, and Data Highways | E-Book | sack.de
E-Book

Balderjahn / Mathar / Schader Classification, Data Analysis, and Data Highways

Proceedings of the 21st Annual Conference of the Gesellschaft für Klassifikation e.V., University of Potsdam, March 12–14, 1997
1998
ISBN: 978-3-642-72087-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of the 21st Annual Conference of the Gesellschaft für Klassifikation e.V., University of Potsdam, March 12–14, 1997

E-Book, Englisch, 414 Seiten, eBook

Reihe: Studies in Classification, Data Analysis and Knowledge Organization

ISBN: 978-3-642-72087-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Balderjahn / Mathar / Schader Classification, Data Analysis, and Data Highways jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1: Classification and Data Analysis.- Entropy Optimizing Methods for the Estimation of Tables.- Automatic Spectral Classification.- An Approach to Modelling Directional and Betweenness Data.- The Application of Random Coincidence Graphs for Testing the Homogeneity of Data.- City-Block Scaling: Smoothing Strategies for Avoiding Local Minima.- Probability Models and Limit Theorems for Random Interval Graphs with Applications to Cluster Analysis.- Labor Supply Decisions in Germany A Semiparametric Regression Analysis.- A Multiplicative Approach to Partitioning the Risk of Disease.- Multiple Media Stream Data Analysis: Theory and Applications.- Multimedia Data Analysis using ImageTcl.- Robust Bivariate Boxplots and Visualization of Multivariate Data.- Unsupervised Fuzzy Classification of Multispectral Imagery Using Spatial-Spectral Features.- 2: Mathematical and Statistical Methods.- Some News about C.A.MAN Computer Assisted Analysis of Mixtures.- Mathematical Aspects of the Feature Pattern Analysis.- A Note on the Off-Block-Diagonal Approximation of the Burt Matrix as Applied in Joint Correspondence Analysis.- A New Look at the Visual Performance of Nonparametric Hazard Rate Estimators.- Multilevel Modeling: When and Why.- Upper Bounds for the P-Values of a Scan Statistic with a Variable Window.- A Branch-and-bound Algorithm for Boolean Regression.- Mathematical Classification and Clustering: From How to What and Why.- Heteroskedastic Linear Regression Models — A Bayesian Analysis.- A Heuristic Partial-Least-Squares Approach to Estimating Dynamic Path Models.- 3: World Wide Web and the Internet.- Using Logic for the Specification of Hypermedia Documents.- Project TeleTeaching Mannheim — Heidelberg.- WWW-Access to Relational Databases.- Technology, Data, Relevancy: ACulture-Theoretical Look at the Internet.- Self-Organizing Maps of Very Large Document Collections: Justification for the WEBSOM Method.- Segment-Specific Aspects of Designing Online Services in the Internet.- Design of World Wide Web Information Systems.- Large WWW Systems: New Phenomena, Problems and Solutions.- Structured Visualization of Search Result List.- 4: Speech and Pattern Recognition.- Application of Discriminative Methods for Isolated Word Recognition.- Statistical Classifiers in Computer Vision.- Speech Signal Classification with Hybrid Systems.- Stochastic Modelling of Knowledge Sources in Automatic Speech Recognition.- Classification of Speech Pattern Using Locally Recurrent Neural Networks.- 5: Knowledge and Databases.- Information Gathering for Vague Queries Using Case Retrieval Nets.- Characterizing Bibliographic Databases by Content an Experimental Approach.- Medoc Searching Heterogeneous Bibliographic and Text Databases.- Supervised Learning with Qualitative and Mixed Attributes.- 6: Marketing.- A Comparison of Traditional Segmentation Methods with Segmentation Based upon Artificial Neural Networks by Means of Conjoint Data from a Monte-Carlo-Simulation.- Classification of Pricing Strategies in a Competitive Environment.- Predicting the Amount of Purchase by a Procedure Using Multidimensional Scaling: An Application to Scanner Data on Beer.- Author and Subject Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.