Barolli / Enokido / Takizawa | Advances in Network-Based Information Systems | E-Book | sack.de
E-Book

E-Book, Englisch, Band 7, 1195 Seiten, eBook

Reihe: Lecture Notes on Data Engineering and Communications Technologies

Barolli / Enokido / Takizawa Advances in Network-Based Information Systems

The 20th International Conference on Network-Based Information Systems (NBiS-2017)
1. Auflage 2018
ISBN: 978-3-319-65521-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

The 20th International Conference on Network-Based Information Systems (NBiS-2017)

E-Book, Englisch, Band 7, 1195 Seiten, eBook

Reihe: Lecture Notes on Data Engineering and Communications Technologies

ISBN: 978-3-319-65521-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book highlights the latest research findings, innovative research results, methods and development techniques from both theoretical and practical perspectives related to the emerging areas of information networking and their applications. It includes the Proceedings of the 20th International Conference on Network-Based Information Systems (NBiS-2017), held on August 24–26, 2017 in Toronto, Canada.Today’s networks and information systems are evolving rapidly. Further, there are dynamic new trends and applications in information networking such as wireless sensor networks, ad hoc networks, peer-to-peer systems, vehicular networks, opportunistic networks, grid and cloud computing, pervasive and ubiquitous computing, multimedia systems, security, multi-agent systems, high-speed networks, and web-based systems. These networks are expected to manage the increasing number of users, provide support for a range of services, guarantee the quality of service (QoS), and optimize their network resources. In turn, these demands are the source of various research issues and challenges that have to be overcome – and which these Proceeding address.
Barolli / Enokido / Takizawa Advances in Network-Based Information Systems jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Welcome Message From NBiS Steering Committee Co-chairs;6
1.1;NBiS Steering Committee Co-chairs;7
2;Welcome Message From NBIS-2017 General Co-chairs;8
2.1;NBiS-2017 General Co-chairs;9
3;Welcome Message from NBiS-2017 Program Committee Co-chairs;10
3.1;NBiS-2017 Program Committee Co-chairs;11
4;Welcome Message from NBiS-2017 Workshops Co-chairs;12
4.1;NBiS-2017 Workshops Co-chairs;13
4.2;NBiS-2017 Organizing Committee;14
4.3;Honorary Chair;14
4.4;General Co-chairs;14
4.5;Program Committee Co-chairs;14
4.6;Workshop Co-chairs;14
4.7;Award Co-chairs;14
4.8;Publicity Co-chairs;14
4.9;International Liaison Co-chairs;14
4.10;Local Arrangement Co-chairs;15
4.11;Finance Chair;15
4.12;Web Administrator Chairs;15
4.13;Steering Committee;15
4.14;Track Areas and PC Members;15
4.15;Track 1: Mobile and Wireless Networks;15
4.16;Track Co-chairs;15
4.17;PC Members;16
4.18;Track 2: Internet of Things and Big Data;16
4.19;Track Co-chairs;16
4.20;PC Members;16
4.21;Track 3: Cloud, Grid and P2P Computing;17
4.22;Track Co-chairs;17
4.23;PC Members;17
4.24;Track 4: Multimedia, Web and Internet Applications;18
4.25;Track Co-chairs;18
4.26;PC Members;18
4.27;Track 5: Ubiquitous and Pervasive Computing;18
4.28;Track Co-chairs;18
4.29;PC Members;18
4.30;Track 6: Network Security and Privacy;19
4.31;Track Co-chairs;19
4.32;PC Members;19
4.33;Track 7: Database, Data Mining, and Semantic Computing;19
4.34;Track Co-chairs;19
4.35;PC Members;20
4.36;Track 8: Network Protocols and Applications;20
4.37;Track Co-chairs;20
4.38;PC Members;20
4.39;Track 9: Intelligent Computing and Networking;21
4.40;Track Co-chairs;21
4.41;PC Members;21
4.42;Track 10: Parallel and Distributed Computing;22
4.43;Track Co-chairs;22
4.44;PC Members;22
4.45;Track 11: Cognitive Computing – Theory and Applications;22
4.46;Track Co-chairs;22
4.47;PC Members;22
4.48;NBiS-2017 Reviewers;23
5;Welcome Message from INVITE-2017 Workshop Organizers;24
5.1;INVITE-2017 Workshop Organizers;24
5.2;INVITE-2017 Organizing Committee;25
5.3;Workshop Co-chairs;25
5.4;Program Committee Members;25
6;Welcome Message from ADPNA-2017 Workshop Co-chairs;26
6.1;ADPNA-2017 Workshop Organizers;27
6.2;ADPNA-2017 Workshop Chair;27
6.3;ADPNA-2017 Organizing Committee;27
6.4;Workshop Organizers;27
6.5;Workshop Chair;27
6.6;Program Committee;27
7;Welcome Message from HETNET-2017 Workshop Organizers;28
7.1;HETNET-2017 Workshop Chair;29
7.2;HETNET-2017 Workshop PC Chair;29
7.3;HETNET-2017 Organizing Committee;29
7.4;Workshop Chair;29
7.5;Workshop PC Chair;29
7.6;Program Committee Members;29
8;Welcome Message from ISSE-2017 Workshop Co-chairs;30
8.1;ISSE-2017 Workshop Co-chairs;30
8.2;ISSE-2017 Organizing Committee;31
8.3;Workshop Co-chairs;31
8.4;Program Committee Co-chairs;31
8.5;Program Committee Members;31
9;Welcome Message from TwCSec-2017 Workshop Co-chairs;32
9.1;TwCSec-2017 Workshop Co-chairs;33
9.2;TwCSec-2017 Organizing Committee;33
9.3;Workshop Co-chair;33
9.4;Advisory Co-chairs;33
9.5;Program Committee Members;33
10;Welcome Message from INWC-2017 Workshop Organizers;35
10.1;INWC-2017 Workshop Co-chairs;36
10.2;INWC-2017 Workshop PC Chair;36
10.3;INWC-2017 Organizing Committee;36
10.4;Workshop Co-chairs;36
10.5;Workshop PC Co-chair;36
10.6;Program Committee Members;36
11;Welcome Message from DEMoC-2017 Workshop Chair;37
11.1;DEMoC-2017 Workshop Chair;37
11.2;DEMoC-2017 Organizing Committee;37
11.3;Workshop Organizer;37
11.4;Program Committee;38
12;Welcome Message from WSSM-2017 Workshop Co-chairs;39
12.1;WSSM-2017 Workshop Co-chairs;40
12.2;WSSM-2017 Organizing Committee;40
12.3;Workshop Co-chairs;40
12.4;Program Chair;40
12.5;Program Committee Members;40
13;NBiS-2017 Keynote Talks;41
14;Network and Information Systems Need to Embed Privacy and Security, by Design;42
15;Cooperative Self-driving Vehicles;43
16;Contents;44
17;The 20 International Conference on Network-Based Information Systems (NBiS-2017);55
18;Performance Evaluation of WMNs by WMN-PSOSA Simulation System Considering Constriction and Linearly Decreasing Inertia Weight Methods;56
18.1;1 Introduction;56
18.2;2 Node Placement Problem in WMNs;58
18.3;3 Proposed and Implemented Simulation System;58
18.3.1;3.1 PSO Algorithm;58
18.3.2;3.2 Simulated Annealing;60
18.4;4 Simulation Results;62
18.5;5 Conclusions;64
18.6;References;64
19;A Fuzzy-Based Approach for Improving Team Collaboration in MobilePeerDroid Mobile System: Effects of Time Delay on Collaboration Work;67
19.1;1 Introduction;67
19.2;2 Scenarios of Collaborative Teamwork;69
19.2.1;2.1 Collaborative Teamwork and Virtual Campuses;69
19.2.2;2.2 Mobile Ad Hoc Networks (MANETs);70
19.3;3 Vote Weights;70
19.3.1;3.1 Votes with Embedded Weight;70
19.3.2;3.2 Voting Score;71
19.4;4 Application of Fuzzy Logic for Control;71
19.4.1;4.1 FC;71
19.4.2;4.2 Linguistic Variables;72
19.4.3;4.3 FC Rules;72
19.4.4;4.4 Control Knowledge Base;72
19.4.5;4.5 Defuzzification Methods;73
19.5;5 Proposed Fuzzy-Based Peer Voting Score System;73
19.6;6 Simulation Results;77
19.7;7 Conclusions and Future Work;77
19.8;References;78
20;A Comparison Study of WLAN and WLAN Triage Systems Considering Throughput Parameter;80
20.1;1 Introduction;80
20.2;2 IEEE 802.11;81
20.2.1;2.1 EDCF;83
20.2.2;2.2 HCCA;84
20.3;3 Application of Fuzzy Logic for Control;84
20.3.1;3.1 FC;84
20.3.2;3.2 Linguistic Variables;84
20.3.3;3.3 FC Rules;85
20.3.4;3.4 Control Knowledge Base;85
20.3.5;3.5 Defuzzification Methods;87
20.4;4 Implemented Testbed;87
20.5;5 Experimental Results;90
20.6;6 Conclusions;91
20.7;References;92
21;An Eco Algorithm for Dynamic Migration of Virtual Machines in a Server Cluster;95
21.1;1 Introduction;95
21.2;2 System Model;96
21.2.1;2.1 Virtual Machines;96
21.2.2;2.2 MLPCM and MLC Models;97
21.3;3 A Dynamic Algorithm to Migrate Virtual Machines;98
21.3.1;3.1 Estimation of Process Termination Time;98
21.3.2;3.2 Virtual Machine Selection;98
21.3.3;3.3 Virtual Machine Migration;99
21.4;4 Evaluation;100
21.5;5 Concluding Remarks;105
21.6;References;105
22;A Simple Energy-Aware Virtual Machine Migration Algorithm in a Server Cluster;108
22.1;1 Introduction;108
22.2;2 System Model;109
22.2.1;2.1 Virtual Machines;109
22.2.2;2.2 MLPCM Model;109
22.2.3;2.3 MLCM Model;110
22.3;3 Energy-Efficient Migration of Virtual Machines;111
22.3.1;3.1 Estimation Model;111
22.3.2;3.2 VM Selection (VMS) Algorithm;112
22.3.3;3.3 VM Migration (VMM) Algorithm;113
22.4;4 Evaluation;114
22.5;5 Concluding Remarks;117
22.6;References;117
23;Evaluation of Flexible Synchronization Protocol to Prevent Illegal Information Flow in P2PPS Systems;119
23.1;1 Introduction;119
23.2;2 Information Flow in TBAC Model;121
23.2.1;2.1 TBAC Model;121
23.2.2;2.2 Information Flow Relations;121
23.3;3 Synchronization Protocols;123
23.3.1;3.1 Protocols for Hidden Topics;123
23.3.2;3.2 Flexible Synchronization (FS) Protocol for Forgotten Topics;124
23.4;4 Evaluation;125
23.5;5 Concluding Remarks;129
23.6;References;129
24;Energy-Efficient Role Ordering Scheduler;131
24.1;1 Introduction;131
24.2;2 System Model;132
24.2.1;2.1 Object-Based Systems with RBAC Model;132
24.2.2;2.2 Significancy of Methods;132
24.2.3;2.3 Significancy of Roles;133
24.2.4;2.4 Significancy of Transactions;134
24.2.5;2.5 Role-Based Serial (RS) Partitions;135
24.2.6;2.6 Meaningless Methods;135
24.2.7;2.7 Power Consumption Model of a Server;136
24.3;3 Energy-Efficient Role Ordering Scheduler;137
24.4;4 Evaluation;140
24.4.1;4.1 Environment;140
24.4.2;4.2 Average Total Electric Energy Consumption;140
24.4.3;4.3 Average Execution Time of Each Transaction;141
24.5;5 Concluding Remarks;142
24.6;References;142
25;A GA-Based Simulation System for WMNs: A Comparison Study for Different WMN Architectures Considering Exponential and Weibull Distributions, HWMP and TCP Protocols;144
25.1;1 Introduction;144
25.2;2 Architectures of WMNs;145
25.3;3 Overview of HWMP Routing Protocol;146
25.4;4 Simulation Description and Design;146
25.4.1;4.1 GUI of WMN-GA System;146
25.4.2;4.2 Positioning of Mesh Routers by WMN-GA System;147
25.4.3;4.3 Simulation Description;147
25.4.4;4.4 NS-3;149
25.5;5 Simulation Results;151
25.6;6 Conclusions;152
25.7;References;153
26;An Energy-Aware One-to-one Routing Protocol in Wireless Ad-Hoc Network;155
26.1;1 Introduction;155
26.2;2 System Model;156
26.3;3 EAO Protocol;157
26.3.1;3.1 Forwarding Phase;157
26.3.2;3.2 Backtracking Phase;159
26.4;4 Evaluation;162
26.5;5 Concluding Remarks;165
26.6;References;165
27;Effect of Packet Error Rate on Selection of Actor Nodes in WSANs: A Comparison Study of Two Fuzzy-Based Systems;167
27.1;1 Introduction;167
27.2;2 WSAN;168
27.2.1;2.1 WSAN Challenges;168
27.2.2;2.2 WSAN Architecture;169
27.3;3 Proposed System Model;170
27.3.1;3.1 Problem Description;170
27.3.2;3.2 System Parameters;170
27.3.3;3.3 Fuzzy Implementation;171
27.3.4;3.4 Description of FBS1 and FBS2;172
27.4;4 Simulation Results;174
27.5;5 Conclusions and Future Work;177
27.6;References;177
28;Delay Tolerant Networking with Antenna Directional Controls with the Weight Function for the Multiple Vehicular Communication;180
28.1;Abstract;180
28.2;1 Introduction;180
28.3;2 Related Works;181
28.4;3 The DTN with the AAA System;182
28.5;4 The Prototype System;184
28.6;5 Experiments;185
28.7;6 The Conclusion and Future Study;187
28.8;References;187
29;A Localization Free Variable Transmit Power Routing Protocol for Underwater Wireless Sensor Networks;189
29.1;1 Introduction;189
29.2;2 Related Work;191
29.3;3 Channel Model;192
29.3.1;3.1 Channel Noise;192
29.3.2;3.2 Attenuation;192
29.4;4 Proposed Scheme;193
29.4.1;4.1 Network Model;193
29.4.2;4.2 Protocol Operation;193
29.4.3;4.3 Transmit Power Calculation;195
29.5;5 Simulation Results;195
29.6;6 Conclusions;198
29.7;References;199
30;Security of Visual Captcha for Authentication Procedures;201
30.1;Abstract;201
30.2;1 Introduction;201
30.3;2 Authentication Procedures in Cloud Service Management;202
30.4;3 Remarks on Security of Visual Captcha;203
30.5;4 Conclusions;204
30.6;Acknowledgments;204
30.7;References;204
31;Mobility Information Infrastructure in Challenged Network Environment Based on IoT Technology;206
31.1;Abstract;206
31.2;1 Introduction;206
31.3;2 System Configuration;207
31.4;3 Expected Applications and Implementation;209
31.5;4 Expected Applications and Implementation;210
31.5.1;4.1 Realtime Road Surface Data Exchange System;210
31.5.2;4.2 Dig Data Road Condition Sharing System;211
31.5.3;4.3 Tourist and Disaster Information System;212
31.6;5 Prototype System and Performance Evaluation;212
31.7;6 Conclusions and Remarks;216
31.8;Acknowledgement;216
31.9;References;216
32;Energy Management in Residential Area using Genetic and Strawberry Algorithm;218
32.1;1 Introduction;218
32.2;2 Related Work;219
32.3;3 Problem Statement;221
32.4;4 Proposed Model;221
32.4.1;4.1 Load Classification;221
32.4.2;4.2 Energy Pricing Signal;223
32.4.3;4.3 Residential Users;223
32.4.4;4.4 Algorithms;223
32.5;5 Simulation and Results;224
32.6;6 Conclusion;227
32.7;References;228
33;Biogeography Based Optimization for Home Energy Management in Smart Grid;230
33.1;1 Introduction;230
33.2;2 Related Work;232
33.3;3 Problem Statement;234
33.4;4 System Model;234
33.4.1;4.1 Electrical Appliances;235
33.4.2;4.2 Pricing Signal;236
33.4.3;4.3 Objective Function;236
33.4.4;4.4 Heuristic Algorithm;236
33.5;5 Simulation;239
33.6;6 Conclusion;242
33.7;References;242
34;Demand Side Management Using Strawberry Algorithm and Bacterial Foraging Optimization Algorithm in Smart Grid;244
34.1;1 Introduction;244
34.2;2 Related Work;245
34.3;3 Motivation;248
34.4;4 Proposed System Model;248
34.4.1;4.1 Appliances Classification;249
34.4.2;4.2 Strawberry Algorithm;250
34.4.3;4.3 Bacterial Foraging Optimization;251
34.5;5 Simulations and Results;251
34.6;6 Conclusion;254
34.7;References;254
35;Demand Side Management Using Meta-Heuristic Techniques and ToU in Smart Grid;256
35.1;1 Introduction;256
35.2;2 Related Work;257
35.3;3 System Model;259
35.4;4 Meta-Heuristic Techniques;261
35.4.1;4.1 EDE;261
35.4.2;4.2 HSA;262
35.4.3;4.3 BFA;262
35.4.4;4.4 GA;263
35.5;5 Simulation Results and Discussions;263
35.6;6 Conclusion;268
35.7;References;269
36;Home Energy Management Based on Harmony Search Algorithm and Crow Search Algorithm;271
36.1;1 Introduction;271
36.2;2 Related Work;273
36.3;3 Problem Statement;274
36.4;4 Proposed System;275
36.4.1;4.1 HSA;276
36.4.2;4.2 CSA;277
36.5;5 Simulation and Results;279
36.6;6 Conclusion and Future Work;282
36.7;References;282
37;Meta-Heuristic and Nature Inspired Approaches for Home Energy Management;284
37.1;1 Introduction;284
37.2;2 Related Work;286
37.2.1;2.1 ILP;286
37.2.2;2.2 Heuristic Approach;286
37.2.3;2.3 DP Approach;287
37.2.4;2.4 Hybrid Approach;288
37.3;3 Proposed Work;289
37.3.1;3.1 HSA;289
37.3.2;3.2 FA;291
37.3.3;3.3 EDE;291
37.4;4 Simulation and Results;293
37.5;5 Conclusion;296
37.6;References;296
38;Home Energy Management Using Social Spider and Bacterial Foraging Algorithm;298
38.1;1 Introduction;298
38.2;2 Related Work;300
38.3;3 Problem Statement;302
38.4;4 Proposed Scheme;303
38.4.1;4.1 SSO Technique;305
38.4.2;4.2 BFA Optimization Algorithm;305
38.5;5 Simulations and Discussions;306
38.6;6 Conclusion;308
38.7;References;309
39;Home Energy Management Using HSA, FA, BFOA Algorithms in Smart Grids;310
39.1;1 Introduction;310
39.2;2 Related Work;312
39.2.1;2.1 Heuristic Algorithm;312
39.2.2;2.2 Dynamic Programming;312
39.2.3;2.3 Hybrid Approach;313
39.3;3 Proposed System Model;313
39.3.1;3.1 Optimization Schemes;314
39.3.2;3.2 Harmony Search Algorithm;314
39.3.3;3.3 Firefly Algorithm;315
39.3.4;3.4 Bacterial Foraging Optimization Algorithm;315
39.4;4 Simulations and Results Evaluation;316
39.4.1;4.1 Load Classification;316
39.4.2;4.2 Pricing Model;317
39.5;5 Conclusion;321
39.6;References;321
40;Comparison of BFA and EWA in Home Energy Management System Using RTP;323
40.1;1 Introduction;323
40.2;2 Related Work;325
40.3;3 Proposed Techniques;328
40.3.1;3.1 Load Categorization;328
40.3.2;3.2 Algorithms;329
40.4;4 Simulation and Results;331
40.5;5 Conclusion;334
40.6;References;334
41;Data Collecting System Based on CCN with Congestion Avoidance Routing on WSN;336
41.1;1 Introduction;336
41.2;2 Related Works;337
41.2.1;2.1 Basic Procedure of NDN;337
41.2.2;2.2 Apply the Technology of NDN to WSN;338
41.3;3 Adaptive Relay Node Selection Method on WSN;339
41.3.1;3.1 DCF (Dynamic Change Forwarding) Selecting the Next Relay Node According to the Next Node;339
41.3.2;3.2 DCF with Path Level Investigation;339
41.4;4 Performance Evaluations;340
41.4.1;4.1 Effects of Length of Forwarding Path;341
41.5;5 Conclusion;346
41.6;References;346
42;A Method for Vehicle Control at T-Junctions for the Diffusion Period of Autonomous Vehicles;348
42.1;1 Introduction;348
42.2;2 Related Works;349
42.3;3 A Basic Experiment;349
42.3.1;3.1 Road Model;349
42.3.2;3.2 Vehicle Model;349
42.3.3;3.3 Result and Discussion;351
42.3.4;3.4 Requirements of Autonomous Vehicles in the Diffusion Period;353
42.4;4 Improved Vehicle Model;353
42.5;5 Proposed Method;355
42.6;6 Evaluation;356
42.6.1;6.1 Result of Proposed Method;356
42.6.2;6.2 Discussion;357
42.7;7 Conclusion;357
42.8;References;358
43;Mechanism for Adopting Device-to-Device Communication in Cellular Networks;359
43.1;1 Introduction;359
43.2;2 Related Work;360
43.3;3 System Model;361
43.3.1;3.1 Data Transmission Rate;361
43.3.2;3.2 Reward from BS;363
43.3.3;3.3 Implementation of D2D Communication Establishment;364
43.4;4 Simulation Results and Analysis;364
43.5;5 Conclusions;368
43.6;References;369
44;Optimal Transmission Range in Sleeping Wireless Networks;370
44.1;Abstract;370
44.2;1 Introduction;370
44.3;2 Related Work;371
44.4;3 Background;371
44.4.1;3.1 Routing Based on Forwarding Sets;372
44.4.2;3.2 Random Wakeup;372
44.5;4 Analytical Model;372
44.5.1;4.1 Average Path Length;372
44.5.2;4.2 Average Packets in the Network;373
44.5.3;4.3 Backoff Characterization;374
44.5.4;4.4 Sleep Delay Characterization;374
44.5.5;4.5 Queuing Delay;375
44.5.6;4.6 Total Service Time;375
44.5.7;4.7 Optimal Range;376
44.6;5 Model Validation;376
44.6.1;5.1 Analytical Evaluation;376
44.6.2;5.2 Simulation Results;378
44.7;6 Conclusion;379
44.8;References;379
45;Load Balancing in Wireless Mesh Networks Based on OpenFlow;381
45.1;Abstract;381
45.2;1 Introduction;381
45.3;2 Existing Protocols;382
45.3.1;2.1 Wireless Mesh Networks;382
45.3.2;2.2 OpenFlow;383
45.3.3;2.3 Distributed Routing Algorithm;384
45.3.4;2.4 OpenFlow-Based Load Balancing;384
45.4;3 Proposed Load-Balancing Method;385
45.4.1;3.1 Architecture of OpenFlow-Based Load Balancing;385
45.4.2;3.2 Load-Aware DSR;385
45.4.3;3.3 Route Reconstruction Function Based on OpenFlow;386
45.5;4 Performance Evaluation;386
45.5.1;4.1 Evaluation Condition;386
45.5.2;4.2 Evaluation Results;387
45.6;5 Conclusions;390
45.7;Acknowledgments;390
45.8;References;390
46;Directional Preference Collector Tree Protocol for Mobile Wireless Sensing;392
46.1;Abstract;392
46.2;1 Introduction;392
46.3;2 Related Work;394
46.4;3 Directional Preference CTP (DP-CTP);395
46.4.1;3.1 The DP-CTP ETX Value;396
46.4.2;3.2 The Relative Motion Trickle Algorithm;396
46.5;4 CTP Vs DP-CTP;397
46.6;5 Conclusion;401
46.7;References;402
47;Beyond Beacons – An Interactive Positioning and Tracking System Solely Based on BLE Mesh Network;404
47.1;Abstract;404
47.2;1 Introduction;404
47.3;2 Related Work;405
47.4;3 System Design;406
47.4.1;3.1 System Architecture;406
47.4.2;3.2 Principle of Operation;407
47.4.3;3.3 System Design;408
47.5;4 Implementation and Preliminary Results;410
47.5.1;4.1 Experiment 1;411
47.5.2;4.2 Experiment 2;413
47.6;5 Conclusions and Future Work;414
47.7;References;415
48;Development of a Monitoring System Based on Power Consumption;416
48.1;1 Introduction;416
48.2;2 Developed System;417
48.2.1;2.1 Analysis of the Mean Power Consumption;418
48.2.2;2.2 Selection of Sensor Devices;419
48.2.3;2.3 Proposed Algorithm;421
48.3;3 Results and Discussion;422
48.4;4 Conclusion;424
48.5;References;424
49;A Study of Detecting Child Pornography on Smart Phone;426
49.1;Abstract;426
49.2;1 Introduction;426
49.3;2 Literature Review;428
49.4;3 The Conceptual Model;429
49.4.1;3.1 An Illustrative Experiment with WhatsApp;432
49.4.2;3.2 Penetration Test in Android’s Security;433
49.5;4 Conclusion and Future Work;434
49.6;Acknowledgement;434
49.7;References;435
50;Computational Public Safety: The Evolution to Public Safety Research;438
50.1;Abstract;438
50.2;1 Introduction;438
50.3;2 Our Works: Public Safety and USAR;439
50.4;3 Proposal: Computational Public Safety;439
50.5;4 Selected Examples of CPS;440
50.5.1;4.1 Smart City;440
50.5.2;4.2 Smart Grid;440
50.5.3;4.3 Transportation Network;441
50.6;5 Internet of Things;441
50.7;6 Data Mining and Predictive Algorithms in Public Safety Domain;442
50.8;7 Discussion and Conclusion;444
50.9;References;445
51;Load Experiments of the vDACS Scheme in Case of the 600 Connectionsby 300 Clients;448
51.1;Abstract;448
51.2;1 Introduction;448
51.3;2 Motivation and Related Research;450
51.4;3 Existing DACS Scheme and WDACS System;452
51.4.1;3.1 Basic Principle of the DACS Scheme;452
51.4.2;3.2 Application to Cloud Environment;454
51.5;4 Cloud Type Virtual PBNM for the Common Use Between Plural Organizations;455
51.5.1;4.1 Concept of the Cloud Type Virtual PBNM for the Common Use Between Plural Organizations;455
51.5.2;4.2 Implementation of the Basic Function in the Cloud Type Virtual PBNM for the Common Usage Between Plural Organizations;455
51.5.3;4.3 Results of the Functional Evaluation;456
51.6;5 Load Experiment Results;457
51.6.1;5.1 Load Experiment Results to Confirm the Function of the Software for Realization of the Cloud Type Virtual PBNM for the Common Use Between Plural Organizations;457
51.6.2;5.2 Load Experiment Results for Applications to the Small and Medium Size Scale Organization;457
51.7;6 Conclusion;459
51.8;Acknowledgments;459
51.9;References;459
52;QoS Aware Virtual Network Embedding in SDN-Based Metro Optical Network;461
52.1;1 Introduction;461
52.2;2 Related Work;463
52.3;3 Resource Allocation Framework for SDN-enabled MON;463
52.3.1;3.1 Overview of the Model;463
52.3.2;3.2 CG-ILP Based Formulation for VN Request Mapping on MEC-DC and WDM Network;465
52.4;4 Performance Evaluation;468
52.4.1;4.1 Simulation Setup;468
52.4.2;4.2 Evaluation Metrics;468
52.4.3;4.3 Performance Measurement;468
52.5;5 Conclusion;471
52.6;References;472
53;Verification of Data Collection Methods for Live Migration Protection Mechanism;473
53.1;1 Introduction;473
53.1.1;1.1 Background;473
53.1.2;1.2 Issues on iKaaS Platform;474
53.1.3;1.3 Our Contribution;474
53.2;2 iKaaS Platform;475
53.3;3 State-of-the-Art Technologies;476
53.4;4 Live Migration Process with Data Protection Mechanism;476
53.5;5 Implementation;478
53.5.1;5.1 Request Based Method;480
53.5.2;5.2 Regular Interval Method;481
53.6;6 Conclusion;482
53.7;References;483
54;Evaluation and Improvement of Farmers Market Information System to Connect with Some Social Stakeholders;484
54.1;1 Introduction;484
54.2;2 Related Work;485
54.3;3 Developed System;486
54.3.1;3.1 Methodology;486
54.3.2;3.2 System Features and Overview;487
54.3.3;3.3 System Design;487
54.3.4;3.4 New Functions;487
54.4;4 Evaluation of System Effectiveness;489
54.4.1;4.1 Experiment on Farmer's Time to Access Market Information;489
54.4.2;4.2 Experiment on Farmer's Income;491
54.4.3;4.3 Experiment on System Usability;491
54.4.4;4.4 Comparing System Effectiveness with Related Work;493
54.5;5 Discussion;493
54.5.1;5.1 Instant Access to Market Information;493
54.5.2;5.2 Improved Incomes to Farmers;493
54.5.3;5.3 Impact of SMS, WEB and SWAHILI Language to System Usability;494
54.6;6 Conclusion;494
54.7;References;494
55;Performance Evaluation of a Learning Logger System for Active Learning Using Smartphone;496
55.1;Abstract;496
55.2;1 Introduction;496
55.3;2 ALS: Active Learning System;497
55.4;3 Flow of Interactive Lecture;499
55.5;4 Interface for Interactive Lecture;501
55.6;5 Performance Evaluation of AVS;502
55.7;6 Conclusions;503
55.8;References;504
56;Validation of 3D Convolutional Neural Networks for Customer Satisfaction Estimation Using Videos;506
56.1;1 Introduction;506
56.2;2 Perception Correction Hypotheses;507
56.3;3 Preliminary Experiment;508
56.3.1;3.1 Experimental Procedure;508
56.3.2;3.2 Experimental Result;509
56.4;4 Estimation Expectation and Satisfaction;510
56.4.1;4.1 3D-CNN;510
56.4.2;4.2 Data Preparation;511
56.4.3;4.3 Experiments;512
56.5;5 Discussion and Future Work;514
56.6;6 Conclusion;514
56.7;References;514
57;Hybrid Learning Using Profit Sharing and Genetic Algorithm for Partially Observable Markov Decision Processes;516
57.1;1 Introduction;516
57.2;2 POMDPs;517
57.3;3 Hybrid Learning Using PS and GA;518
57.3.1;3.1 Profit Sharing;519
57.3.2;3.2 Crossover;520
57.3.3;3.3 Fitness Calculation;521
57.3.4;3.4 Mutation;522
57.4;4 Related Research;522
57.5;5 Performance Experiment Under POMDP;523
57.6;6 Adaptability Experiment for Environmental Changes;524
57.7;7 Conclusion;527
57.8;References;527
58;Resource Propagation Algorithm to Reinforce Knowledge Base in Linked Data;529
58.1;Abstract;529
58.2;1 Introduction;529
58.3;2 Link Prediction;530
58.4;3 Resource Propagation Algorithm;531
58.4.1;3.1 Loading Turtle Data;531
58.4.2;3.2 Conversion from Turtle Data to Graph Data Considering Predicates;531
58.4.3;3.3 Link Prediction Considering Semantic Distance;531
58.4.4;3.4 Reconstruction of Turtle Data Using the Link Predicted Values;532
58.5;4 Experiments;532
58.6;5 Conclusions;536
58.7;Acknowledgement;536
58.8;References;536
59;Metadata Complement Method by Linked Open Data for Literature Search;537
59.1;Abstract;537
59.2;1 Introduction;537
59.3;2 I-Scover System Outline;538
59.4;3 Literature Search Support System;539
59.4.1;3.1 Keyword Ranking Analysis;540
59.4.2;3.2 Co-occurring Words Analysis;540
59.4.3;3.3 Keywords Estimation;541
59.5;4 Evaluation;544
59.6;5 Conclusions;544
59.7;Acknowledgments;544
59.8;References;544
60;Neuro-Evolutionary Approach to Multi-objective Optimization in One-Player Mahjong;545
60.1;1 Introduction;545
60.2;2 One-Player Mahjong;546
60.2.1;2.1 Terminology;547
60.2.2;2.2 Related Works;548
60.2.3;2.3 Multiobjective Optimization;549
60.3;3 Modular Multi-objective Neuro-Evolution of Augmenting Topologies (MM-NEAT);549
60.3.1;3.1 Modular Network;549
60.3.2;3.2 Module Mutation;549
60.4;4 Experiment;551
60.4.1;4.1 Experimental Setup;551
60.4.2;4.2 Result;552
60.5;5 Conclusion;555
60.6;References;555
61;Tor Fingerprinting: Tor Browser Can Mitigate Browser Fingerprinting?;557
61.1;Abstract;557
61.2;1 Introduction;557
61.3;2 Related Work on Browser Fingerprinting;558
61.4;3 De-Anonymizing Attacks;559
61.4.1;3.1 Related Attacks Against Tor Browser;559
61.4.2;3.2 Current Anti-fingerprinting;560
61.5;4 Tor Fingerprinting;562
61.5.1;4.1 HTTP Header;562
61.5.2;4.2 Content Window Size;562
61.5.3;4.3 Font List;562
61.5.4;4.4 SSE2 Test;563
61.5.5;4.5 Estimated Number of Cores;563
61.5.6;4.6 Refresh Rate;563
61.5.7;4.7 Web Storage;564
61.6;5 Experiments;564
61.6.1;5.1 Collected Samples;564
61.6.2;5.2 Observed Results;564
61.6.3;5.3 Tracking with Tor Fingerprinting;565
61.7;6 Considerations;566
61.7.1;6.1 Amount of Samples;566
61.7.2;6.2 Tracking with Tor Fingerprinting;566
61.8;7 Conclusions;568
61.9;Acknowledgments;568
61.10;References;568
62;Study on Persuasion Effect of Computer VirusMeasures Based on Collective ProtectionMotivation Theory;571
62.1;Abstract;571
62.2;1 Introduction;571
62.3;2 Related Research Work;572
62.4;3 Threat Appeals Model for Information Security;572
62.4.1;3.1 Collective Protection Motivation Theory;572
62.4.2;3.2 Threat Appeals Model;573
62.5;4 Investigation of Protection Motivation;573
62.5.1;4.1 Questionnaire Survey;573
62.5.2;4.2 Targets;574
62.5.3;4.3 Analytical Method;575
62.5.4;4.4 Analytical Results;575
62.6;5 Discussion;578
62.7;6 Conclusions;579
62.8;Acknowledgements;580
62.9;Appendix: Decision of Latent Variables for Measurement Behavior Intention Model;580
62.10;References;580
63;Empirical Evaluation of Rhythm-Based Authentication Method for Mobile Devices;582
63.1;1 Introduction;582
63.2;2 Related Work;583
63.2.1;2.1 Biometrics Authentication;583
63.2.2;2.2 Authentication Method Resistant to Shoulder-Surfing Attacks;584
63.3;3 Conventional RA Method;584
63.4;4 Improved RA Method;586
63.4.1;4.1 RandomForest;586
63.4.2;4.2 Procedure of Our Improved RA Method;586
63.5;5 Performance Evaluation;587
63.5.1;5.1 Experimental Environment;587
63.5.2;5.2 Feature Importance;588
63.6;6 Conclusion;589
63.7;References;590
64;Slyware Prevention: Threat of Websites Inducing Accidental Taps and Countermeasures;592
64.1;Abstract;592
64.2;1 Introduction;592
64.3;2 Slyware;593
64.3.1;2.1 Mistap-Slyware;593
64.3.2;2.2 Dishonest/Illegal Acts Using Mistaps;594
64.4;3 Related Work;595
64.4.1;3.1 Approach for Suppressing the Occurrence of Mistaps;595
64.4.2;3.2 Approach for Suppressing the Occurrence of Mistransitions;595
64.5;4 Countermeasure Against Mistap-Slyware;596
64.5.1;4.1 Concept;596
64.5.2;4.2 Proposed Method;597
64.6;5 Basic Experiment;597
64.6.1;5.1 Purpose;597
64.6.2;5.2 Experimental Web Pages;598
64.6.3;5.3 Experimental Settings;600
64.6.4;5.4 Method Settings;600
64.6.5;5.5 Evaluation Items;601
64.7;6 Experimental Results;603
64.7.1;6.1 Safety Evaluation;603
64.7.2;6.2 Usability Evaluation;603
64.7.3;6.3 Interview Results;604
64.8;7 Conclusion;604
64.9;References;605
65;An Efficient Privacy-Preserving Comparison Protocol;606
65.1;1 Introduction;606
65.1.1;1.1 Prior Works;607
65.1.2;1.2 Background and Our Contribution;608
65.2;2 Secure Comparison Protocol;608
65.2.1;2.1 The DGK Protocol;608
65.2.2;2.2 Our Protocol Using Asymmetric SwHE;609
65.3;3 Packing Method for Secure Comparison Protocol;611
65.4;4 Secure Integers Comparison Computation;613
65.5;5 Performance Evaluation;614
65.5.1;5.1 Preliminaries;614
65.5.2;5.2 Experimental Setup;615
65.5.3;5.3 Experimental Results;615
65.6;6 Conclusions;616
65.7;References;617
66;A k-nearest Neighbour Query Processing Strategy Using the mqr-tree;619
66.1;1 Introduction;619
66.2;2 Related Work and Background;620
66.2.1;2.1 k-nearest Neighbour Strategies;620
66.2.2;2.2 mqr-tree;621
66.3;3 An mqr-tree-Based k-Nearest Neighbour Strategy;622
66.4;4 Evaluation;624
66.4.1;4.1 Methodology;624
66.4.2;4.2 Results;626
66.4.3;4.3 Discussion;629
66.5;5 Conclusion;630
66.6;References;630
67;Dynamic Resource Adaptation Method by Cooperative User Devices in Wireless Network;631
67.1;Abstract;631
67.2;1 Introduction;631
67.3;2 System Overview;633
67.4;3 Cooperative Device Selection Algorithm;635
67.5;4 Prototype System;636
67.6;5 Performance Evaluation;637
67.7;6 Conclusion;639
67.8;References;640
68;A Method for Improving Cache Hit Ratio by Virtual Capacity Multiplication;641
68.1;1 Introduction;641
68.2;2 Procedure of NDN;642
68.2.1;2.1 Construction of CR on NDN;643
68.2.2;2.2 Basic Procedure of NDN;643
68.3;3 Contents Caching and Its Problem by LRU on NDN;644
68.4;4 Virtual Capacity Multiplication;644
68.4.1;4.1 Overview of VCM;645
68.5;5 Perfromance Evaluation;647
68.5.1;5.1 Evaluation Environment;647
68.5.2;5.2 Characteristics of Cache Hit Ratio--Interest Generation Rate;649
68.5.3;5.3 Performance Evaluation Under Varying Number of CRs;650
68.5.4;5.4 Performance Evaluation Under Varying both Number of CRs and Capacity of Each CR;651
68.6;6 Conclusion;651
68.7;References;651
69;LEAS: A Load-Aware Energy-Efficient Adaptive Scheduling for Heterogeneous Wireless Sensor Networks;653
69.1;Abstract;653
69.2;1 Introduction;653
69.3;2 Related Work;654
69.4;3 Load-Aware Energy-Efficient Adaptive Scheduling;655
69.4.1;3.1 Random Wakeup;656
69.4.2;3.2 Adaptation to Network Conditions;657
69.4.2.1;3.2.1 Residual Energy Levels;657
69.4.2.2;3.2.2 Network Load;658
69.5;4 Performance Evaluation;659
69.5.1;4.1 Effect of Threshold;659
69.5.2;4.2 Adaptation to Heterogeneous Energy Levels;661
69.5.3;4.3 Adaptation to Load;662
69.6;5 Conclusion;663
69.7;References;663
70;GD-CAR: A Genetic Algorithm Based Dynamic Context Aware Routing Protocol for Opportunistic Networks;664
70.1;1 Introduction;664
70.2;2 Proposed Protocol for OppNets;666
70.2.1;2.1 Dynamic Context Management;667
70.2.2;2.2 GD-CAR Protocol;667
70.3;3 Simulation Setup and Results;670
70.3.1;3.1 Simulation Setup;670
70.3.2;3.2 Simulation Results;671
70.4;4 Conclusion and Future Work;674
70.5;References;674
71;The 12 International Workshop on Network-based Virtual Reality and Tele-existence (INVITE-2017);676
72;Implementation of a Community-Based Disaster Prevention Information System;677
72.1;Abstract;677
72.2;1 Introduction;677
72.3;2 Purpose of Research;678
72.4;3 Disaster Information Input System;678
72.5;4 Disaster Information Output System;680
72.6;5 Disaster Information Notification System;683
72.7;6 Evaluation;684
72.8;7 Conclusion;686
72.9;Acknowledgments;686
72.10;References;686
73;An Automatic Image Registration Method Using Downhill Simplex Method and Its Applications;687
73.1;Abstract;687
73.2;1 Introduction;687
73.3;2 Previous Works;688
73.4;3 An Image Registration Using Downhill Simplex Method;689
73.4.1;3.1 Initial Position Calculation;689
73.4.2;3.2 An Evaluation Method for Mutual Information with a Limited Range;690
73.4.3;3.3 MI Computation and Convergence Condition;690
73.5;4 Experimental Results;693
73.6;5 Conclusion;694
73.7;Acknowledgments;694
73.8;References;695
74;Multilingual Information Service Based on Combination of Smartphone and Digital Signage;696
74.1;Abstract;696
74.2;1 Introduction;696
74.3;2 Required Function in Multilingual Information Service;697
74.3.1;2.1 Multilingual Push Message on Smartphone;697
74.3.2;2.2 Web Information in Native Language;698
74.3.3;2.3 Multilingual Digital Signage;698
74.4;3 System Construction;699
74.4.1;3.1 Multilingual Push Notification Subsystem;700
74.4.2;3.2 Multilingual Web Information Access Subsystem;700
74.4.3;3.3 Multilingual Digital Signage Subsystem;701
74.5;4 Evaluation Experiment;702
74.6;5 Conclusions;704
74.7;Acknowledgement;705
74.8;References;705
75;Ultra Definition Display Environment for Disaster Management GIS;706
75.1;Abstract;706
75.2;1 Introduction;706
75.3;2 Related Works;707
75.4;3 Design of LIVEWall System;707
75.4.1;3.1 System Overview;707
75.4.2;3.2 Disaster State Information;709
75.4.3;3.3 Workspaces;709
75.4.4;3.4 Network Consideration for Disaster;710
75.5;4 Interface Design and Implementation of Components;711
75.5.1;4.1 State Report Device;711
75.5.2;4.2 Workspace Controller;712
75.5.3;4.3 Presentation Host and TDW;713
75.5.4;4.4 LIVEWall Manager;713
75.6;5 Conclusions;714
75.7;Acknowledgement;715
75.8;References;715
76;A Study on the Operation of Infrastructure Management System with Citizens’ Participation Using the ICT Technology;716
76.1;Abstract;716
76.2;1 Introduction;716
76.3;2 Development of the System to Gathering Infrastructure Defect Information from Citizens;717
76.4;3 Social Experiment of Infrastructure Management System with Citizens’ Participation;718
76.4.1;3.1 Outline of Social Experiment;718
76.4.2;3.2 Awareness Survey of Municipal Employees on System Deployment;719
76.4.3;3.3 Questionnaire Survey for Citizen and Municipal Employees Participating in the Social Experiment;720
76.4.4;3.4 Content and Aggregation of Posted Data;722
76.5;4 Conclusion;724
76.6;References;725
77;Development and Evaluation of Operation Interface for Lesson Using Large-Scale Screen in Elementary and Secondary Education;726
77.1;1 Introduction;726
77.2;2 Related Work;727
77.3;3 Proposal and Implementation of Operation Interface;728
77.3.1;3.1 Requirements for Operation Interface;728
77.3.2;3.2 Implementation of Interface for Screen Operation;728
77.4;4 Evaluation;730
77.5;5 Conclusion and Future Work;731
77.6;References;732
78;Implementation of Multimedia Contents for Supporting Different Types of Self-learning;733
78.1;Abstract;733
78.2;1 Introduction;733
78.3;2 Educational Multimedia Contents;734
78.4;3 Construction Flow for Educational Multimedia Contents;735
78.5;4 Implementation;737
78.6;5 Conclusions;740
78.7;References;740
79;Development of Integrated Visual Analytic Tool with 3D Visualization;742
79.1;Abstract;742
79.2;1 Introduction;742
79.3;2 System Overview;743
79.4;3 Implementation of the First Prototype;743
79.4.1;3.1 Multivariate Color-Map for Data Extraction;743
79.4.2;3.2 Free Hand Color-Map Setting;744
79.4.3;3.3 Filtering with Parallel Coordinates Plot;745
79.4.4;3.4 Remote Visualization with WebGL;745
79.5;4 Potential Customer’s Survey;747
79.6;5 Conclusion;747
79.7;Acknowledgments;748
79.8;References;748
80;The 11 International Workshop on Advanced Distributed and Parallel Network Applications (ADPNA-2017);749
81;Hybrid Replication Schemes of Processes in Energy-Efficient Server Clusters;750
81.1;1 Introduction;750
81.2;2 System Model;751
81.3;3 Type of Replicas;753
81.3.1;3.1 Components of a Replica;753
81.3.2;3.2 Dependency of Components;753
81.4;4 Electric Energy Consumption;755
81.5;5 Hybrid Replication;756
81.6;6 Evaluation;758
81.7;7 Concluding Remarks;761
81.8;References;761
82;Gossip-Style Message Dissemination Based on Biconnected Components;762
82.1;1 Introduction;762
82.2;2 Related Work;763
82.3;3 System Model;764
82.4;4 Gossip-Style Message Dissemination Protocol Based on Biconnected Components;764
82.4.1;4.1 Matrix for Biconnected Components;765
82.4.2;4.2 The Protocol for Message Dissemination;765
82.5;5 Performance Evaluation;766
82.5.1;5.1 Environment and Parameters;766
82.5.2;5.2 Performance Metrics;767
82.6;6 Simulation Result;768
82.7;7 Conclusion;768
82.8;References;768
83;Energy Efficient Raft Consensus Algorithm;770
83.1;1 Introduction;770
83.1.1;1.1 Contribution;770
83.2;2 Related Work;771
83.3;3 System Model and Problem Statement;771
83.4;4 Raft Consensus Algorithm;772
83.4.1;4.1 Roles of Nodes;772
83.4.2;4.2 Leader Election;772
83.4.3;4.3 Log Replication;773
83.5;5 Energy Efficient Raft Consensus Algorithm;774
83.5.1;5.1 Suspended Nodes;774
83.5.2;5.2 Resume Messages;774
83.6;6 Performance Evaluation;775
83.6.1;6.1 Environment, Parameters and Performance Criterion;775
83.6.2;6.2 On the Number of Messages with the Suspended Rate;776
83.6.3;6.3 The Impact of Failures on the Number of Messages;776
83.7;7 Conclusion;777
83.8;References;777
84;Scalable Distributed Data Analysis on Structured P2P Network;779
84.1;1 Introduction;779
84.2;2 Distributed Data Aggregation on Structured P2P Network;780
84.3;3 Distributed Data Analysis on Structured P2P Network;783
84.4;4 Simulation Results;784
84.5;5 Conclusion;786
84.6;References;787
85;Risk Assessment for Privacy Protection of Information Literacy Beginners in Big Data Era;788
85.1;Abstract;788
85.2;1 Introduction;788
85.3;2 Examples and Issues of Big Data Utilization;789
85.3.1;2.1 Practical Use Cases and Issues of Big Data Utilization;789
85.3.2;2.2 Definition of Information Literacy Beginner;791
85.3.3;2.3 Related Work;791
85.4;3 Risk Assessment: Qualitative Evaluation of Privacy Protection of Information Literacy Beginners in Big Data Utilization;792
85.4.1;3.1 Extraction of Risk Factors;792
85.4.2;3.2 Derivation of Proposed Measures by Risk Matrix Method;792
85.5;4 Risk Assessment: Quantitative Evaluation of Privacy Protection of Information Literacy Beginnersin Big Data Use;794
85.5.1;4.1 Risk Formula;795
85.5.1.1;4.1.1 Approximation of Asset Value;795
85.5.1.2;4.1.2 Approximation of Threat Value;795
85.5.1.3;4.1.3 Approximation of Value of Vulnerability;796
85.5.2;4.2 Calculation of Risk Value;796
85.5.3;4.3 Discussion;797
85.6;5 Conclusion;798
85.7;Acknowledgments;798
85.8;References;798
86;Performance Evaluation of Peer--to--Peer Network Applications on Multiple Overlay Networks;801
86.1;1 Introduction;801
86.2;2 Construction of Logical Networks;801
86.2.1;2.1 Node Coordination System;801
86.2.2;2.2 Provision of Network Information by ISP;802
86.3;3 Basic Concept of Proposed System;802
86.3.1;3.1 System Architecture;802
86.3.2;3.2 Prototype of Proposed System;803
86.4;4 Performance Evaluation;804
86.4.1;4.1 Simulation Conditons;804
86.4.2;4.2 Simulation Results;805
86.5;5 Summary;807
86.6;References;807
87;The 8 International Workshop on Heterogeneous Networking Environments and Technologies (HETNET-2017);808
88;Residential Area Power Management Using Genetic Algorithm and Biogeography Based Optimization in Smart Grid;809
88.1;1 Introduction;809
88.2;2 Related Work;810
88.3;3 Problem Statement;812
88.4;4 System Model;812
88.4.1;4.1 GA;813
88.4.2;4.2 BBO;813
88.4.3;4.3 Categorization of Appliances;814
88.5;5 Simulations and Discussions;815
88.6;6 Conclusion;818
88.7;References;818
89;A Social Spider Optimization Based Home Energy Management System;820
89.1;1 Introduction;820
89.2;2 Related Work;822
89.3;3 System Model;823
89.3.1;3.1 Social Spider Optimization Algorithm;825
89.3.2;3.2 BFA Optimization Technique;826
89.4;4 Problem Statement;826
89.5;5 Simulations and Discussions;826
89.6;6 Conclusion;828
89.7;References;828
90;Collecting Data in Sensor Networks Using Homesick Lévy Walk;829
90.1;1 Introduction;829
90.2;2 Related Work;830
90.3;3 System Model;830
90.4;4 Homesick Lévy Walk on Grid Graphs;831
90.5;5 Performance Analysis;832
90.5.1;5.1 Environment and Parameters;832
90.5.2;5.2 Performance Metrics;832
90.5.3;5.3 Simulation Result;833
90.6;6 Conclusion;835
90.7;References;835
91;Privacy Preservation for Trajectory Data Publishing and Heuristic Approach;837
91.1;1 Introduction;837
91.2;2 Problem Definition;840
91.3;3 Algorithm;841
91.4;4 Experimental Evaluation;842
91.4.1;4.1 Effectiveness;843
91.4.2;4.2 Efficiency;845
91.5;5 Conclusion;846
91.6;References;846
92;The 8 International Workshop on Intelligent Sensors and Smart Environments (ISSE-2017);848
93;A Transmission Method to Guarantee QoS Parameters in Wireless Sensor Network;849
93.1;Abstract;849
93.2;1 Introduction;849
93.3;2 The Related Work;850
93.4;3 Chinese Reminder Theorem;851
93.5;4 Proposed Approach;853
93.6;5 Performance Evaluation;855
93.7;6 Conclusion;858
93.8;References;858
94;3D Model Generation of Black Cattle Using Multiple RGB Cameras for Their BCS;860
94.1;Abstract;860
94.2;1 Introduction;860
94.3;2 Related Work;861
94.4;3 System Overview;862
94.5;4 3D Model Generation of Eight RGB Cameras System by Multicolor Attributed Voxel Based Method;863
94.5.1;4.1 Taking Camera Calibration Images;863
94.5.2;4.2 Taking Camera Images of Cows;863
94.5.3;4.3 3D Model Data Generation of Cows;864
94.6;5 Conclusions;868
94.7;Acknowledgement;869
94.8;References;869
95;Load Scheduling Optimization Using Heuristic Techniques and Combined Price Signal;870
95.1;1 Introduction;870
95.2;2 Literature Review and Motivation;872
95.3;3 Proposed System;873
95.4;4 Simulation Results and Discussion;877
95.5;5 Conclusion;879
95.6;References;880
96;Home Energy Managment System Using Meta-heuristic Techniques;881
96.1;1 Introduction;881
96.2;2 Related Work;883
96.3;3 Problem Statement;886
96.4;4 Proposed Model;886
96.4.1;4.1 Optimization Techniques;888
96.5;5 Results Evaluation and Simulations;888
96.6;6 Conclusion;891
96.7;References;892
97;Improvement of Indoor Position Estimation of Open-Campus Event System Using BLE Beacon;893
97.1;1 Introduction;893
97.2;2 MMDAgent;894
97.3;3 Previous Research;894
97.3.1;3.1 Voice Dialogue Mode;894
97.3.2;3.2 Features of This System;895
97.3.3;3.3 Acquisition of Positional Information;896
97.3.4;3.4 Algorithm of Walking Path Estimation Using Dead Reckoning;896
97.3.5;3.5 Problem;896
97.4;4 Proposed Method;896
97.4.1;4.1 Acquisition of BLE Beacon Information;897
97.4.2;4.2 Management of BLE Beacon Information;897
97.4.3;4.3 Correction of the Current Location;897
97.4.4;4.4 Algorithm of Correction of Current Location;898
97.5;5 Experiment;898
97.5.1;5.1 Outline;898
97.5.2;5.2 Results;899
97.6;6 Conclusion;899
97.7;References;900
98;Development of Review Selection System Reflecting User Preference Using SVM;901
98.1;1 Introduction;901
98.2;2 Related Works;902
98.2.1;2.1 Research Investigating Classification of Review Sentences that Evoke User Interests;902
98.2.2;2.2 Research Investigating Discrimination of Review Sentence Usefulness;903
98.2.3;2.3 Position of the Present Study;903
98.3;3 Difficulties of Classifying Reviews According to User Preferences;903
98.3.1;3.1 F1: Mistaken User Preference Is Extracted;904
98.3.2;3.2 F2: Notation Variation of Words in a Review;904
98.3.3;3.3 F3: Losing of Co-Occurrence Relation of Feature Quantity;904
98.4;4 Design of the Proposed System;906
98.4.1;4.1 Solution of F1 (Mistaken User Preference Is Extracted);906
98.4.2;4.2 Solution of F2 (Notation Variation of Words in Reviews);907
98.4.3;4.3 Solution of F3 (Losing a Co-Occurrence Relation of Feature Quantity);907
98.5;5 Implementation of the Proposed System;908
98.6;6 Conclusion and Future Works;909
98.7;References;909
99;The 8 International Workshop on Trustworthy Computing and Security (TwCSec-2017);910
100;Function Secret Sharing Using Fourier Basis;911
100.1;1 Introduction;911
100.1.1;1.1 Our Contribution;913
100.2;2 Preliminaries;913
100.2.1;2.1 Definitions;913
100.2.2;2.2 Basis Functions;915
100.3;3 Our Proposal;916
100.3.1;3.1 General FSS Scheme for Succinct Functions;916
100.3.2;3.2 FSS Scheme for Succinct Linear Combinations of Point Functions;918
100.3.3;3.3 FSS Scheme for the Fourier Basis;918
100.3.4;3.4 FSS Scheme for Succinct Functions w.r.t. the Fourier Basis;920
100.4;4 Conclusion;920
100.5;References;921
101;Secure Non-transferable Proxy Re-encryption for Group Membership and Non-membership;922
101.1;1 Introduction;922
101.1.1;1.1 Related Works;923
101.1.2;1.2 Comparison with Previous Works;923
101.1.3;1.3 Our Contributions;924
101.2;2 Preliminaries;924
101.2.1;2.1 Bilinear Map;925
101.2.2;2.2 Assumption;925
101.2.3;2.3 Security Model;926
101.3;3 Construction of the Scheme;927
101.4;4 Security;929
101.5;5 Conclusion;932
101.6;References;932
102;A Performance Evaluation of Data Storage Approach for High Availability and Confidentiality on Multi ...;934
102.1;Abstract;934
102.2;1 Introduction;934
102.3;2 Related Work;935
102.4;3 Proposed Method;935
102.5;4 Implementation;940
102.6;5 Evaluation;942
102.7;6 Conclusion;944
102.8;Acknowledgments;945
102.9;References;945
103;Risk of Re-Identification Based on Euclidean Distance in Anonymized Data PWSCUP2015;947
103.1;1 Introduction;947
103.2;2 Utility and Security;948
103.2.1;2.1 The Synthesized Micro Dataset;948
103.2.2;2.2 Utility and Security;948
103.2.3;2.3 The Existing Anonymization Methods;949
103.3;3 Re-Identification Method by Using the Euclidean Distance;950
103.3.1;3.1 Identify-euc;950
103.3.2;3.2 EUC1 and EUC2;950
103.4;4 Evaluation;952
103.4.1;4.1 The Anonymized Datasets of PWSCUP2015;952
103.4.2;4.2 The Anonymized Datasets by a Single Method;952
103.4.3;4.3 Expected Effects;954
103.4.4;4.4 The Result of Evaluation;955
103.4.5;4.5 Comparative EUC1 and the Existing Methods;955
103.4.6;4.6 Discussion;956
103.4.7;4.7 Evaluation the Ability of Our Method;957
103.5;5 Conclusions;958
103.6;References;958
104;Highly Responsive Distributed Denial-of-Service Attacks Detection by Using Real-Time Burst Detection Method;960
104.1;1 Introduction;960
104.2;2 Real-Time Burst Detection Method;961
104.2.1;2.1 Data Structure;962
104.2.2;2.2 Cell Generation;962
104.2.3;2.3 Burst Detection Methodology;962
104.3;3 Proposed Method;963
104.3.1;3.1 Addition of Continuous Attack Detection Methodology;963
104.3.2;3.2 Suppression of Excessive Detection Events;964
104.4;4 Evaluation Experiment;965
104.4.1;4.1 Computing Environment;965
104.4.2;4.2 Evaluation Index;965
104.4.3;4.3 Data;966
104.4.4;4.4 Evaluation of Detection Accuracy;966
104.4.5;4.5 Evaluation of Computational Efficiency;968
104.5;5 Conclusion;968
104.6;References;969
105;Efficient Secure Arithmetic on Floating Point Numbers;970
105.1;1 Introduction;970
105.2;2 Related Works;971
105.2.1;2.1 Secure Computation for Integer Arithmetic;971
105.2.2;2.2 Secure Computation for Floating Point Numbers;971
105.2.3;2.3 Other Secure Computation Method for Real Numbers;972
105.3;3 Decreasing Computation Time on Secure Arithmetic;972
105.3.1;3.1 Approaches;972
105.3.2;3.2 Finding Significant Factor on Computation Time;973
105.3.3;3.3 Implementation;973
105.3.4;3.4 Improvement Algorithm Implementation;977
105.4;4 Evaluation;978
105.4.1;4.1 Performance of Methods;978
105.4.2;4.2 Performance of Arithmetics;979
105.5;5 Conclusion;979
105.6;References;980
106;An Extension of (2, m(m+1)/2)-Threshold Secret Sharing Schemes;981
106.1;1 Introduction;981
106.1.1;1.1 Requirements in Use of Clouds;981
106.1.2;1.2 Challenges to Be Solved;983
106.1.3;1.3 Secret Sharing Schemes Using Exclusive-OR Operations;984
106.1.4;1.4 The Contrubutions of This Paper;985
106.2;2 Reconsideration of XOR-(2,n)-SSS;985
106.2.1;2.1 Existing Examples of XOR-(2,n)-SSS as a Starting Point;985
106.2.2;2.2 A New Method Proposed in WAIS2013;986
106.2.3;2.3 Introduction of a Concept ``isomorphism'' in XOR-(2,n)-SSS;987
106.2.4;2.4 Definition of 2-Propagation Bases Set and Constructions of XOR-(2,m(m+1)/2)-SSS;988
106.2.5;2.5 New Construction of XOR-(2,m2)-SSS;989
106.3;3 Conclusions and Future Work;991
106.4;References;991
107;High-Speed Forensic Technology Against Targeted Cyber Attacks (Extended Abstract);992
107.1;1 Introduction;992
108;The 7 International Workshop on Information Networking and Wireless Communications (INWC-2017);993
109;A Modified Energy-Aware B.A.T.M.A.N Routing Protocol;994
109.1;1 Introduction;994
109.2;2 B.A.T.M.A.N Routing Protocol;995
109.2.1;2.1 OGM Packet;996
109.2.2;2.2 Originator List (Routing Table);996
109.2.3;2.3 Sequence Numbers, Ranges, and Windows;998
109.2.4;2.4 Broadcasting Originator Messages (OGMs);998
109.2.5;2.5 Receiving Originator Messages (Neighbor Ranking);999
109.3;3 Proposed Method;999
109.3.1;3.1 Energy-Aware OGM Packet;999
109.3.2;3.2 Energy-Aware Originator List (Routing Table);1000
109.3.3;3.3 Energy-Aware Broadcasting of Originator Messages (OGMs);1001
109.3.4;3.4 Energy-Aware Receiving of Originator Messages (Neighbor Ranking);1001
109.4;4 Discussion;1001
109.4.1;4.1 Implementation;1001
109.4.2;4.2 Problems and Issues;1002
109.5;5 Future Works;1002
109.6;References;1002
110;BER Comparison of Constant Envelope DCT and FFT Based OFDM with Phase Modulation;1004
110.1;1 Introduction;1004
110.2;2 Baseband OFDM Signals;1005
110.2.1;2.1 Baseband FFT-OFDM Signal;1005
110.2.2;2.2 Baseband DCT-OFDM Signal;1005
110.3;3 CE-OFDM Transmitter;1006
110.4;4 BER Analysis of CE-OFDM System in AWGN;1007
110.4.1;4.1 Phase Demodulation;1008
110.4.2;4.2 OFDM Receiver;1009
110.4.3;4.3 The Probability of Error;1010
110.4.4;4.4 The Threshold Effect;1011
110.5;5 Results and Discussion;1011
110.6;6 Conclusions;1012
110.7;References;1013
111;Design of Microwave Circuit with Periodic Structure for Channel Switching by Carrier Frequency;1014
111.1;1 Introduction;1014
111.2;2 Measurement of Photonic Crystal Waveguide;1015
111.3;3 Measurement of T-Shaped Branching Waveguide;1016
111.4;4 Conclusion;1018
111.5;References;1018
112;A Message Suppression Method for Inter-Vehicle Communications;1020
112.1;1 Introduction;1020
112.2;2 Delay/Disruption Tolerant Networking;1021
112.3;3 Message Suppression Method for VANETs;1022
112.3.1;3.1 Overview of EMSC;1022
112.3.2;3.2 Message Suppression Time;1023
112.3.3;3.3 Scenario Settings;1024
112.4;4 Simulation Results;1025
112.5;5 Conclusions;1026
112.6;References;1026
113;Demand Side Management Using Strawberry and Enhanced Differential Evolution Algorithms;1028
113.1;1 Introduction;1028
113.2;2 Related Work;1030
113.3;3 Problem Statement;1031
113.4;4 Proposed System Model;1032
113.4.1;4.1 Optimization Algorithms;1032
113.5;5 Simulation Results and Discussion;1034
113.6;6 Conclusion and Future Work;1037
113.7;References;1038
114;A Heuristic Scheduling Approach for Demand Side Energy Management;1040
114.1;1 Introduction;1040
114.2;2 Related Work;1041
114.3;3 Proposed System;1042
114.4;4 Simulation Results;1045
114.5;5 Conclusion;1048
114.6;References;1048
115;The 6 International Workshop on Advances in Data Engineering and Mobile Computing (DEMoC-2017);1049
116;Generating Manzai-Scenario Using Entity Mistake;1050
116.1;1 Introduction;1050
116.2;2 Related Work;1051
116.3;3 Basic Concept;1052
116.3.1;3.1 What Is Manzai?;1052
116.3.2;3.2 Manzai-Robots;1054
116.4;4 Rival Word Extraction Method;1054
116.5;5 Introduction Part Based on Entity Mistake;1055
116.6;6 Experiments;1056
116.6.1;6.1 Experiment 1: Comparing Rival Extraction Method;1056
116.6.2;6.2 Experiment 2: Benefits of the Entity Mistake;1057
116.7;7 Conclusion;1059
116.8;References;1059
117;A k-anonymized Text Generation Method;1061
117.1;1 Introduction;1061
117.2;2 Related Work;1062
117.3;3 k-anonymization of Texts;1063
117.3.1;3.1 Generation of Anonymization Dictionary;1064
117.3.2;3.2 Applying Anonymization Dictionary to Text;1065
117.4;4 Case Study;1066
117.5;5 Conclusion;1068
117.6;References;1068
118;A System Design for Detecting Moving Objects in Capturing Video Images Using Laser Range Scanners;1070
118.1;1 Introduction;1070
118.2;2 Moving Object Positioning System;1071
118.2.1;2.1 System Configuration;1071
118.2.2;2.2 Motion Detection by Laser Range Scanner;1072
118.2.3;2.3 Motion Detection by Camera Image Analysis in Coordination with a Laser Range Scanner;1074
118.3;3 Preliminary Performance Evaluation of the Prototype System;1075
118.3.1;3.1 Fundamental Evaluation with One Camera;1076
118.3.2;3.2 Additional Evaluation with Two Cameras;1077
118.4;4 Conclusion;1079
118.5;References;1079
119;Proposition of Division-Based Broadcasting System for Delivering Multiple Videos;1080
119.1;1 Introduction;1080
119.2;2 Division-Based Broadcasting for Delivering Single Video;1081
119.2.1;2.1 VoD and Broadcasting;1081
119.2.2;2.2 Waiting Time;1081
119.3;3 Related Works;1081
119.3.1;3.1 Scheduling Methods in Division-Based Broadcasting;1081
119.3.2;3.2 Division-Based Broadcasting System;1082
119.4;4 Division-Based Broadcasting for Multiple Videos;1083
119.4.1;4.1 Outline;1083
119.4.2;4.2 Scheduling Methods for Delivering Multiple Videos;1083
119.4.3;4.3 Assumed Environment;1084
119.4.4;4.4 MV-B Method;1084
119.4.5;4.5 MV-R Method;1084
119.5;5 Delivery System in Division-Based Broadcasting;1085
119.5.1;5.1 Outline;1085
119.5.2;5.2 Synchronization of Timing for Delivering Segments;1085
119.5.3;5.3 Simultaneous Playback of Multiple Videos;1086
119.6;6 Design;1087
119.6.1;6.1 Synchronous Delivery for Multiple Videos;1087
119.6.2;6.2 Sequential Playback for Multiple Videos;1088
119.6.3;6.3 Data Format;1088
119.6.4;6.4 Assumed Environment;1089
119.6.5;6.5 Implementation;1089
119.7;7 Conclusion;1089
119.8;References;1090
120;The 6 International Workshop on Web Services and Social Media (WSSM-2017);1091
121;A Block-Based Structure Editor for the English Language;1092
121.1;1 Introduction;1092
121.2;2 System Design;1093
121.2.1;2.1 Field for Generating Blocks;1094
121.2.2;2.2 Field for Combining Blocks;1095
121.2.3;2.3 Field to Show the Sentence;1096
121.2.4;2.4 Field to Show Structure Trees;1096
121.3;3 Implementation;1097
121.3.1;3.1 Definition and Internal Data Structure of Edit Field Object;1097
121.3.2;3.2 Definition and Internal Data Structure of Block Object;1097
121.3.3;3.3 Definition and Internal Structure of Derivation Rule Object;1098
121.3.4;3.4 Function for Generating Blocks;1098
121.3.5;3.5 Function for Changing the Selected Symbol Type;1098
121.3.6;3.6 Function for Combining Blocks;1099
121.3.7;3.7 Function for Decomposing Composite Block;1099
121.3.8;3.8 Function for Suggesting Candidate Blocks to Be Combined with a Specified Block;1099
121.3.9;3.9 Function for Showing the Structure Trees;1100
121.4;4 Conclusions;1100
121.5;References;1101
122;A Web Application for Passengers to Watch Coming Buses in Rural Areas;1102
122.1;1 Introduction;1102
122.2;2 System Overview;1103
122.3;3 Functions;1104
122.3.1;3.1 Display of Bus Stops and Routes;1104
122.3.2;3.2 Display of the Current Location of the Bus;1105
122.3.3;3.3 Sentry and Alert;1106
122.4;4 Implementation;1107
122.4.1;4.1 Display of Bus Stops and Routes;1107
122.4.2;4.2 Display of the Current Location of the Bus;1108
122.4.3;4.3 Sentry and Alert;1109
122.5;5 Conclusions;1109
122.6;References;1109
123;An HTML5 Implementation of Web-Com for Recording Chalk Annotations and Talk Voices onto Web Pages;1111
123.1;1 Introduction;1111
123.2;2 Recording;1112
123.3;3 Playing Back;1114
123.4;4 Conclusions;1116
123.5;References;1116
124;A Web-Based Visualization System for Interdisciplinary Research Using Japanese Local Political Corpus;1117
124.1;1 Introduction;1117
124.2;2 System Architecture;1118
124.2.1;2.1 Outline;1118
124.2.2;2.2 Japanese Political Corpus;1119
124.3;3 System Features;1120
124.3.1;3.1 Full-Text Search for Utterances;1120
124.3.2;3.2 Context Word Extraction Using KWIC;1121
124.3.3;3.3 Map Visualization with Full-Text Search;1121
124.3.4;3.4 Panel Data with Full-Text Search;1122
124.3.5;3.5 Extracting Political Keywords Using TF--IDF;1123
124.4;4 Conclusion;1125
124.5;References;1125
125;Text-Based Video Scene Segmentation: A Novel Method to Determine Shot Boundaries;1127
125.1;1 Introduction;1127
125.2;2 Related Works;1128
125.2.1;2.1 Searching Video Content;1129
125.2.2;2.2 Video Segmentation;1129
125.3;3 Our Proposal;1129
125.3.1;3.1 Overview of the Method;1130
125.3.2;3.2 The Criteria of Segmentation;1130
125.4;4 Experiment;1131
125.5;5 Conclusions and Future Work;1135
125.6;References;1135
126;ELVIDS: Video Search System Prototype with a Three-Level Hierarchy Model;1137
126.1;Abstract;1137
126.2;1 Introduction;1137
126.3;2 Issues of Video Use in Humanities and Social Science Research;1137
126.4;3 Video Search System Prototype with a Three-Level Hierarchy Model;1138
126.4.1;3.1 Database;1138
126.4.2;3.2 Interface;1140
126.5;4 Evaluation Experiment;1142
126.5.1;4.1 Method;1142
126.5.2;4.2 Results;1142
126.6;5 Related Work;1143
126.7;6 Conclusions and Further Work;1144
126.7.1;6.1 Conclusions;1144
126.7.2;6.2 Further Work;1144
126.8;Acknowledgement;1144
126.9;References;1144
127;Comparison of Typing Efficiency Between PC and Smartphone in the Case of Younger Generations;1146
127.1;1 Introduction;1146
127.1.1;1.1 Difference in Typing Between PC and Smartphone;1147
127.1.2;1.2 Novelty of this Research;1147
127.2;2 Our Problem;1147
127.2.1;2.1 Hypothesis Formation;1147
127.2.2;2.2 Data Necessary for Verification;1148
127.3;3 Hogehoge Typing System;1148
127.3.1;3.1 Composition of Hogehoge Typing;1149
127.3.2;3.2 Data to Acquire and Generate;1149
127.3.3;3.3 Implemented Functions;1150
127.4;4 Implementation and Data Analysis;1151
127.4.1;4.1 How to Use Hogehoge Typing;1151
127.4.2;4.2 Experiment;1152
127.4.3;4.3 Questionnaire Survey;1152
127.4.4;4.4 Analysis;1153
127.5;5 Conclusions;1156
127.6;References;1157
128;Extracting Laboratory Front Pages from University Websites;1158
128.1;1 Introduction;1158
128.2;2 Related Work;1159
128.3;3 Extraction of Laboratory Front Pages from University Websites;1160
128.3.1;3.1 Extraction of Laboratory Front Pages;1160
128.3.2;3.2 Selection of Laboratory Front Pages from URL Link;1160
128.3.3;3.3 Selection of Laboratory Front Pages by Using Rules;1161
128.4;4 Implementation;1162
128.4.1;4.1 Keywords Extraction;1163
128.5;5 Evaluation;1164
128.6;6 Discussion;1165
128.7;7 Conclusions;1165
128.8;References;1166
129;Activity Estimation Using Device Positions of Smartphone Users;1167
129.1;Abstract;1167
129.2;1 Introduction;1167
129.2.1;1.1 Related Work;1168
129.3;2 Moving State and Device Positions;1168
129.4;3 Smartphone Application;1171
129.4.1;3.1 Training Phase Using SVM;1171
129.4.2;3.2 Prediction Phase Using the SVM;1172
129.5;4 Experiment and Result;1173
129.6;5 Conclusion;1175
129.7;References;1175
130;A Topic Trend on P2P Based Social Media;1177
130.1;1 Introduction;1177
130.2;2 Literature Survey;1178
130.3;3 P2P-Based SNS;1178
130.4;4 Inference Process;1180
130.5;5 Experimental Result;1181
130.6;6 Conclusion;1183
130.7;References;1184
131;A Method for Extracting Correct Links from Automatic Created Links on Folksonomy;1185
131.1;1 Introduction;1185
131.2;2 Tag Explanatory Article on Folksonomy;1186
131.2.1;2.1 Nico Nico Pedia;1187
131.3;3 Correct Link Extraction Method;1188
131.3.1;3.1 Preprocess;1188
131.3.2;3.2 Mutual Link Extraction;1188
131.3.3;3.3 Algorithm for the Correct Link Extraction;1188
131.4;4 Experiment;1189
131.4.1;4.1 Dataset;1189
131.4.2;4.2 Result;1190
131.5;5 Discussion;1190
131.6;6 Conclusion;1191
131.7;References;1191
132;Author Index;1192



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.