E-Book, Englisch, Band 7, 1195 Seiten, eBook
Reihe: Lecture Notes on Data Engineering and Communications Technologies
Barolli / Enokido / Takizawa Advances in Network-Based Information Systems
1. Auflage 2018
ISBN: 978-3-319-65521-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
The 20th International Conference on Network-Based Information Systems (NBiS-2017)
E-Book, Englisch, Band 7, 1195 Seiten, eBook
Reihe: Lecture Notes on Data Engineering and Communications Technologies
ISBN: 978-3-319-65521-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Welcome Message From NBiS Steering Committee Co-chairs;6
1.1;NBiS Steering Committee Co-chairs;7
2;Welcome Message From NBIS-2017 General Co-chairs;8
2.1;NBiS-2017 General Co-chairs;9
3;Welcome Message from NBiS-2017 Program Committee Co-chairs;10
3.1;NBiS-2017 Program Committee Co-chairs;11
4;Welcome Message from NBiS-2017 Workshops Co-chairs;12
4.1;NBiS-2017 Workshops Co-chairs;13
4.2;NBiS-2017 Organizing Committee;14
4.3;Honorary Chair;14
4.4;General Co-chairs;14
4.5;Program Committee Co-chairs;14
4.6;Workshop Co-chairs;14
4.7;Award Co-chairs;14
4.8;Publicity Co-chairs;14
4.9;International Liaison Co-chairs;14
4.10;Local Arrangement Co-chairs;15
4.11;Finance Chair;15
4.12;Web Administrator Chairs;15
4.13;Steering Committee;15
4.14;Track Areas and PC Members;15
4.15;Track 1: Mobile and Wireless Networks;15
4.16;Track Co-chairs;15
4.17;PC Members;16
4.18;Track 2: Internet of Things and Big Data;16
4.19;Track Co-chairs;16
4.20;PC Members;16
4.21;Track 3: Cloud, Grid and P2P Computing;17
4.22;Track Co-chairs;17
4.23;PC Members;17
4.24;Track 4: Multimedia, Web and Internet Applications;18
4.25;Track Co-chairs;18
4.26;PC Members;18
4.27;Track 5: Ubiquitous and Pervasive Computing;18
4.28;Track Co-chairs;18
4.29;PC Members;18
4.30;Track 6: Network Security and Privacy;19
4.31;Track Co-chairs;19
4.32;PC Members;19
4.33;Track 7: Database, Data Mining, and Semantic Computing;19
4.34;Track Co-chairs;19
4.35;PC Members;20
4.36;Track 8: Network Protocols and Applications;20
4.37;Track Co-chairs;20
4.38;PC Members;20
4.39;Track 9: Intelligent Computing and Networking;21
4.40;Track Co-chairs;21
4.41;PC Members;21
4.42;Track 10: Parallel and Distributed Computing;22
4.43;Track Co-chairs;22
4.44;PC Members;22
4.45;Track 11: Cognitive Computing – Theory and Applications;22
4.46;Track Co-chairs;22
4.47;PC Members;22
4.48;NBiS-2017 Reviewers;23
5;Welcome Message from INVITE-2017 Workshop Organizers;24
5.1;INVITE-2017 Workshop Organizers;24
5.2;INVITE-2017 Organizing Committee;25
5.3;Workshop Co-chairs;25
5.4;Program Committee Members;25
6;Welcome Message from ADPNA-2017 Workshop Co-chairs;26
6.1;ADPNA-2017 Workshop Organizers;27
6.2;ADPNA-2017 Workshop Chair;27
6.3;ADPNA-2017 Organizing Committee;27
6.4;Workshop Organizers;27
6.5;Workshop Chair;27
6.6;Program Committee;27
7;Welcome Message from HETNET-2017 Workshop Organizers;28
7.1;HETNET-2017 Workshop Chair;29
7.2;HETNET-2017 Workshop PC Chair;29
7.3;HETNET-2017 Organizing Committee;29
7.4;Workshop Chair;29
7.5;Workshop PC Chair;29
7.6;Program Committee Members;29
8;Welcome Message from ISSE-2017 Workshop Co-chairs;30
8.1;ISSE-2017 Workshop Co-chairs;30
8.2;ISSE-2017 Organizing Committee;31
8.3;Workshop Co-chairs;31
8.4;Program Committee Co-chairs;31
8.5;Program Committee Members;31
9;Welcome Message from TwCSec-2017 Workshop Co-chairs;32
9.1;TwCSec-2017 Workshop Co-chairs;33
9.2;TwCSec-2017 Organizing Committee;33
9.3;Workshop Co-chair;33
9.4;Advisory Co-chairs;33
9.5;Program Committee Members;33
10;Welcome Message from INWC-2017 Workshop Organizers;35
10.1;INWC-2017 Workshop Co-chairs;36
10.2;INWC-2017 Workshop PC Chair;36
10.3;INWC-2017 Organizing Committee;36
10.4;Workshop Co-chairs;36
10.5;Workshop PC Co-chair;36
10.6;Program Committee Members;36
11;Welcome Message from DEMoC-2017 Workshop Chair;37
11.1;DEMoC-2017 Workshop Chair;37
11.2;DEMoC-2017 Organizing Committee;37
11.3;Workshop Organizer;37
11.4;Program Committee;38
12;Welcome Message from WSSM-2017 Workshop Co-chairs;39
12.1;WSSM-2017 Workshop Co-chairs;40
12.2;WSSM-2017 Organizing Committee;40
12.3;Workshop Co-chairs;40
12.4;Program Chair;40
12.5;Program Committee Members;40
13;NBiS-2017 Keynote Talks;41
14;Network and Information Systems Need to Embed Privacy and Security, by Design;42
15;Cooperative Self-driving Vehicles;43
16;Contents;44
17;The 20 International Conference on Network-Based Information Systems (NBiS-2017);55
18;Performance Evaluation of WMNs by WMN-PSOSA Simulation System Considering Constriction and Linearly Decreasing Inertia Weight Methods;56
18.1;1 Introduction;56
18.2;2 Node Placement Problem in WMNs;58
18.3;3 Proposed and Implemented Simulation System;58
18.3.1;3.1 PSO Algorithm;58
18.3.2;3.2 Simulated Annealing;60
18.4;4 Simulation Results;62
18.5;5 Conclusions;64
18.6;References;64
19;A Fuzzy-Based Approach for Improving Team Collaboration in MobilePeerDroid Mobile System: Effects of Time Delay on Collaboration Work;67
19.1;1 Introduction;67
19.2;2 Scenarios of Collaborative Teamwork;69
19.2.1;2.1 Collaborative Teamwork and Virtual Campuses;69
19.2.2;2.2 Mobile Ad Hoc Networks (MANETs);70
19.3;3 Vote Weights;70
19.3.1;3.1 Votes with Embedded Weight;70
19.3.2;3.2 Voting Score;71
19.4;4 Application of Fuzzy Logic for Control;71
19.4.1;4.1 FC;71
19.4.2;4.2 Linguistic Variables;72
19.4.3;4.3 FC Rules;72
19.4.4;4.4 Control Knowledge Base;72
19.4.5;4.5 Defuzzification Methods;73
19.5;5 Proposed Fuzzy-Based Peer Voting Score System;73
19.6;6 Simulation Results;77
19.7;7 Conclusions and Future Work;77
19.8;References;78
20;A Comparison Study of WLAN and WLAN Triage Systems Considering Throughput Parameter;80
20.1;1 Introduction;80
20.2;2 IEEE 802.11;81
20.2.1;2.1 EDCF;83
20.2.2;2.2 HCCA;84
20.3;3 Application of Fuzzy Logic for Control;84
20.3.1;3.1 FC;84
20.3.2;3.2 Linguistic Variables;84
20.3.3;3.3 FC Rules;85
20.3.4;3.4 Control Knowledge Base;85
20.3.5;3.5 Defuzzification Methods;87
20.4;4 Implemented Testbed;87
20.5;5 Experimental Results;90
20.6;6 Conclusions;91
20.7;References;92
21;An Eco Algorithm for Dynamic Migration of Virtual Machines in a Server Cluster;95
21.1;1 Introduction;95
21.2;2 System Model;96
21.2.1;2.1 Virtual Machines;96
21.2.2;2.2 MLPCM and MLC Models;97
21.3;3 A Dynamic Algorithm to Migrate Virtual Machines;98
21.3.1;3.1 Estimation of Process Termination Time;98
21.3.2;3.2 Virtual Machine Selection;98
21.3.3;3.3 Virtual Machine Migration;99
21.4;4 Evaluation;100
21.5;5 Concluding Remarks;105
21.6;References;105
22;A Simple Energy-Aware Virtual Machine Migration Algorithm in a Server Cluster;108
22.1;1 Introduction;108
22.2;2 System Model;109
22.2.1;2.1 Virtual Machines;109
22.2.2;2.2 MLPCM Model;109
22.2.3;2.3 MLCM Model;110
22.3;3 Energy-Efficient Migration of Virtual Machines;111
22.3.1;3.1 Estimation Model;111
22.3.2;3.2 VM Selection (VMS) Algorithm;112
22.3.3;3.3 VM Migration (VMM) Algorithm;113
22.4;4 Evaluation;114
22.5;5 Concluding Remarks;117
22.6;References;117
23;Evaluation of Flexible Synchronization Protocol to Prevent Illegal Information Flow in P2PPS Systems;119
23.1;1 Introduction;119
23.2;2 Information Flow in TBAC Model;121
23.2.1;2.1 TBAC Model;121
23.2.2;2.2 Information Flow Relations;121
23.3;3 Synchronization Protocols;123
23.3.1;3.1 Protocols for Hidden Topics;123
23.3.2;3.2 Flexible Synchronization (FS) Protocol for Forgotten Topics;124
23.4;4 Evaluation;125
23.5;5 Concluding Remarks;129
23.6;References;129
24;Energy-Efficient Role Ordering Scheduler;131
24.1;1 Introduction;131
24.2;2 System Model;132
24.2.1;2.1 Object-Based Systems with RBAC Model;132
24.2.2;2.2 Significancy of Methods;132
24.2.3;2.3 Significancy of Roles;133
24.2.4;2.4 Significancy of Transactions;134
24.2.5;2.5 Role-Based Serial (RS) Partitions;135
24.2.6;2.6 Meaningless Methods;135
24.2.7;2.7 Power Consumption Model of a Server;136
24.3;3 Energy-Efficient Role Ordering Scheduler;137
24.4;4 Evaluation;140
24.4.1;4.1 Environment;140
24.4.2;4.2 Average Total Electric Energy Consumption;140
24.4.3;4.3 Average Execution Time of Each Transaction;141
24.5;5 Concluding Remarks;142
24.6;References;142
25;A GA-Based Simulation System for WMNs: A Comparison Study for Different WMN Architectures Considering Exponential and Weibull Distributions, HWMP and TCP Protocols;144
25.1;1 Introduction;144
25.2;2 Architectures of WMNs;145
25.3;3 Overview of HWMP Routing Protocol;146
25.4;4 Simulation Description and Design;146
25.4.1;4.1 GUI of WMN-GA System;146
25.4.2;4.2 Positioning of Mesh Routers by WMN-GA System;147
25.4.3;4.3 Simulation Description;147
25.4.4;4.4 NS-3;149
25.5;5 Simulation Results;151
25.6;6 Conclusions;152
25.7;References;153
26;An Energy-Aware One-to-one Routing Protocol in Wireless Ad-Hoc Network;155
26.1;1 Introduction;155
26.2;2 System Model;156
26.3;3 EAO Protocol;157
26.3.1;3.1 Forwarding Phase;157
26.3.2;3.2 Backtracking Phase;159
26.4;4 Evaluation;162
26.5;5 Concluding Remarks;165
26.6;References;165
27;Effect of Packet Error Rate on Selection of Actor Nodes in WSANs: A Comparison Study of Two Fuzzy-Based Systems;167
27.1;1 Introduction;167
27.2;2 WSAN;168
27.2.1;2.1 WSAN Challenges;168
27.2.2;2.2 WSAN Architecture;169
27.3;3 Proposed System Model;170
27.3.1;3.1 Problem Description;170
27.3.2;3.2 System Parameters;170
27.3.3;3.3 Fuzzy Implementation;171
27.3.4;3.4 Description of FBS1 and FBS2;172
27.4;4 Simulation Results;174
27.5;5 Conclusions and Future Work;177
27.6;References;177
28;Delay Tolerant Networking with Antenna Directional Controls with the Weight Function for the Multiple Vehicular Communication;180
28.1;Abstract;180
28.2;1 Introduction;180
28.3;2 Related Works;181
28.4;3 The DTN with the AAA System;182
28.5;4 The Prototype System;184
28.6;5 Experiments;185
28.7;6 The Conclusion and Future Study;187
28.8;References;187
29;A Localization Free Variable Transmit Power Routing Protocol for Underwater Wireless Sensor Networks;189
29.1;1 Introduction;189
29.2;2 Related Work;191
29.3;3 Channel Model;192
29.3.1;3.1 Channel Noise;192
29.3.2;3.2 Attenuation;192
29.4;4 Proposed Scheme;193
29.4.1;4.1 Network Model;193
29.4.2;4.2 Protocol Operation;193
29.4.3;4.3 Transmit Power Calculation;195
29.5;5 Simulation Results;195
29.6;6 Conclusions;198
29.7;References;199
30;Security of Visual Captcha for Authentication Procedures;201
30.1;Abstract;201
30.2;1 Introduction;201
30.3;2 Authentication Procedures in Cloud Service Management;202
30.4;3 Remarks on Security of Visual Captcha;203
30.5;4 Conclusions;204
30.6;Acknowledgments;204
30.7;References;204
31;Mobility Information Infrastructure in Challenged Network Environment Based on IoT Technology;206
31.1;Abstract;206
31.2;1 Introduction;206
31.3;2 System Configuration;207
31.4;3 Expected Applications and Implementation;209
31.5;4 Expected Applications and Implementation;210
31.5.1;4.1 Realtime Road Surface Data Exchange System;210
31.5.2;4.2 Dig Data Road Condition Sharing System;211
31.5.3;4.3 Tourist and Disaster Information System;212
31.6;5 Prototype System and Performance Evaluation;212
31.7;6 Conclusions and Remarks;216
31.8;Acknowledgement;216
31.9;References;216
32;Energy Management in Residential Area using Genetic and Strawberry Algorithm;218
32.1;1 Introduction;218
32.2;2 Related Work;219
32.3;3 Problem Statement;221
32.4;4 Proposed Model;221
32.4.1;4.1 Load Classification;221
32.4.2;4.2 Energy Pricing Signal;223
32.4.3;4.3 Residential Users;223
32.4.4;4.4 Algorithms;223
32.5;5 Simulation and Results;224
32.6;6 Conclusion;227
32.7;References;228
33;Biogeography Based Optimization for Home Energy Management in Smart Grid;230
33.1;1 Introduction;230
33.2;2 Related Work;232
33.3;3 Problem Statement;234
33.4;4 System Model;234
33.4.1;4.1 Electrical Appliances;235
33.4.2;4.2 Pricing Signal;236
33.4.3;4.3 Objective Function;236
33.4.4;4.4 Heuristic Algorithm;236
33.5;5 Simulation;239
33.6;6 Conclusion;242
33.7;References;242
34;Demand Side Management Using Strawberry Algorithm and Bacterial Foraging Optimization Algorithm in Smart Grid;244
34.1;1 Introduction;244
34.2;2 Related Work;245
34.3;3 Motivation;248
34.4;4 Proposed System Model;248
34.4.1;4.1 Appliances Classification;249
34.4.2;4.2 Strawberry Algorithm;250
34.4.3;4.3 Bacterial Foraging Optimization;251
34.5;5 Simulations and Results;251
34.6;6 Conclusion;254
34.7;References;254
35;Demand Side Management Using Meta-Heuristic Techniques and ToU in Smart Grid;256
35.1;1 Introduction;256
35.2;2 Related Work;257
35.3;3 System Model;259
35.4;4 Meta-Heuristic Techniques;261
35.4.1;4.1 EDE;261
35.4.2;4.2 HSA;262
35.4.3;4.3 BFA;262
35.4.4;4.4 GA;263
35.5;5 Simulation Results and Discussions;263
35.6;6 Conclusion;268
35.7;References;269
36;Home Energy Management Based on Harmony Search Algorithm and Crow Search Algorithm;271
36.1;1 Introduction;271
36.2;2 Related Work;273
36.3;3 Problem Statement;274
36.4;4 Proposed System;275
36.4.1;4.1 HSA;276
36.4.2;4.2 CSA;277
36.5;5 Simulation and Results;279
36.6;6 Conclusion and Future Work;282
36.7;References;282
37;Meta-Heuristic and Nature Inspired Approaches for Home Energy Management;284
37.1;1 Introduction;284
37.2;2 Related Work;286
37.2.1;2.1 ILP;286
37.2.2;2.2 Heuristic Approach;286
37.2.3;2.3 DP Approach;287
37.2.4;2.4 Hybrid Approach;288
37.3;3 Proposed Work;289
37.3.1;3.1 HSA;289
37.3.2;3.2 FA;291
37.3.3;3.3 EDE;291
37.4;4 Simulation and Results;293
37.5;5 Conclusion;296
37.6;References;296
38;Home Energy Management Using Social Spider and Bacterial Foraging Algorithm;298
38.1;1 Introduction;298
38.2;2 Related Work;300
38.3;3 Problem Statement;302
38.4;4 Proposed Scheme;303
38.4.1;4.1 SSO Technique;305
38.4.2;4.2 BFA Optimization Algorithm;305
38.5;5 Simulations and Discussions;306
38.6;6 Conclusion;308
38.7;References;309
39;Home Energy Management Using HSA, FA, BFOA Algorithms in Smart Grids;310
39.1;1 Introduction;310
39.2;2 Related Work;312
39.2.1;2.1 Heuristic Algorithm;312
39.2.2;2.2 Dynamic Programming;312
39.2.3;2.3 Hybrid Approach;313
39.3;3 Proposed System Model;313
39.3.1;3.1 Optimization Schemes;314
39.3.2;3.2 Harmony Search Algorithm;314
39.3.3;3.3 Firefly Algorithm;315
39.3.4;3.4 Bacterial Foraging Optimization Algorithm;315
39.4;4 Simulations and Results Evaluation;316
39.4.1;4.1 Load Classification;316
39.4.2;4.2 Pricing Model;317
39.5;5 Conclusion;321
39.6;References;321
40;Comparison of BFA and EWA in Home Energy Management System Using RTP;323
40.1;1 Introduction;323
40.2;2 Related Work;325
40.3;3 Proposed Techniques;328
40.3.1;3.1 Load Categorization;328
40.3.2;3.2 Algorithms;329
40.4;4 Simulation and Results;331
40.5;5 Conclusion;334
40.6;References;334
41;Data Collecting System Based on CCN with Congestion Avoidance Routing on WSN;336
41.1;1 Introduction;336
41.2;2 Related Works;337
41.2.1;2.1 Basic Procedure of NDN;337
41.2.2;2.2 Apply the Technology of NDN to WSN;338
41.3;3 Adaptive Relay Node Selection Method on WSN;339
41.3.1;3.1 DCF (Dynamic Change Forwarding) Selecting the Next Relay Node According to the Next Node;339
41.3.2;3.2 DCF with Path Level Investigation;339
41.4;4 Performance Evaluations;340
41.4.1;4.1 Effects of Length of Forwarding Path;341
41.5;5 Conclusion;346
41.6;References;346
42;A Method for Vehicle Control at T-Junctions for the Diffusion Period of Autonomous Vehicles;348
42.1;1 Introduction;348
42.2;2 Related Works;349
42.3;3 A Basic Experiment;349
42.3.1;3.1 Road Model;349
42.3.2;3.2 Vehicle Model;349
42.3.3;3.3 Result and Discussion;351
42.3.4;3.4 Requirements of Autonomous Vehicles in the Diffusion Period;353
42.4;4 Improved Vehicle Model;353
42.5;5 Proposed Method;355
42.6;6 Evaluation;356
42.6.1;6.1 Result of Proposed Method;356
42.6.2;6.2 Discussion;357
42.7;7 Conclusion;357
42.8;References;358
43;Mechanism for Adopting Device-to-Device Communication in Cellular Networks;359
43.1;1 Introduction;359
43.2;2 Related Work;360
43.3;3 System Model;361
43.3.1;3.1 Data Transmission Rate;361
43.3.2;3.2 Reward from BS;363
43.3.3;3.3 Implementation of D2D Communication Establishment;364
43.4;4 Simulation Results and Analysis;364
43.5;5 Conclusions;368
43.6;References;369
44;Optimal Transmission Range in Sleeping Wireless Networks;370
44.1;Abstract;370
44.2;1 Introduction;370
44.3;2 Related Work;371
44.4;3 Background;371
44.4.1;3.1 Routing Based on Forwarding Sets;372
44.4.2;3.2 Random Wakeup;372
44.5;4 Analytical Model;372
44.5.1;4.1 Average Path Length;372
44.5.2;4.2 Average Packets in the Network;373
44.5.3;4.3 Backoff Characterization;374
44.5.4;4.4 Sleep Delay Characterization;374
44.5.5;4.5 Queuing Delay;375
44.5.6;4.6 Total Service Time;375
44.5.7;4.7 Optimal Range;376
44.6;5 Model Validation;376
44.6.1;5.1 Analytical Evaluation;376
44.6.2;5.2 Simulation Results;378
44.7;6 Conclusion;379
44.8;References;379
45;Load Balancing in Wireless Mesh Networks Based on OpenFlow;381
45.1;Abstract;381
45.2;1 Introduction;381
45.3;2 Existing Protocols;382
45.3.1;2.1 Wireless Mesh Networks;382
45.3.2;2.2 OpenFlow;383
45.3.3;2.3 Distributed Routing Algorithm;384
45.3.4;2.4 OpenFlow-Based Load Balancing;384
45.4;3 Proposed Load-Balancing Method;385
45.4.1;3.1 Architecture of OpenFlow-Based Load Balancing;385
45.4.2;3.2 Load-Aware DSR;385
45.4.3;3.3 Route Reconstruction Function Based on OpenFlow;386
45.5;4 Performance Evaluation;386
45.5.1;4.1 Evaluation Condition;386
45.5.2;4.2 Evaluation Results;387
45.6;5 Conclusions;390
45.7;Acknowledgments;390
45.8;References;390
46;Directional Preference Collector Tree Protocol for Mobile Wireless Sensing;392
46.1;Abstract;392
46.2;1 Introduction;392
46.3;2 Related Work;394
46.4;3 Directional Preference CTP (DP-CTP);395
46.4.1;3.1 The DP-CTP ETX Value;396
46.4.2;3.2 The Relative Motion Trickle Algorithm;396
46.5;4 CTP Vs DP-CTP;397
46.6;5 Conclusion;401
46.7;References;402
47;Beyond Beacons – An Interactive Positioning and Tracking System Solely Based on BLE Mesh Network;404
47.1;Abstract;404
47.2;1 Introduction;404
47.3;2 Related Work;405
47.4;3 System Design;406
47.4.1;3.1 System Architecture;406
47.4.2;3.2 Principle of Operation;407
47.4.3;3.3 System Design;408
47.5;4 Implementation and Preliminary Results;410
47.5.1;4.1 Experiment 1;411
47.5.2;4.2 Experiment 2;413
47.6;5 Conclusions and Future Work;414
47.7;References;415
48;Development of a Monitoring System Based on Power Consumption;416
48.1;1 Introduction;416
48.2;2 Developed System;417
48.2.1;2.1 Analysis of the Mean Power Consumption;418
48.2.2;2.2 Selection of Sensor Devices;419
48.2.3;2.3 Proposed Algorithm;421
48.3;3 Results and Discussion;422
48.4;4 Conclusion;424
48.5;References;424
49;A Study of Detecting Child Pornography on Smart Phone;426
49.1;Abstract;426
49.2;1 Introduction;426
49.3;2 Literature Review;428
49.4;3 The Conceptual Model;429
49.4.1;3.1 An Illustrative Experiment with WhatsApp;432
49.4.2;3.2 Penetration Test in Android’s Security;433
49.5;4 Conclusion and Future Work;434
49.6;Acknowledgement;434
49.7;References;435
50;Computational Public Safety: The Evolution to Public Safety Research;438
50.1;Abstract;438
50.2;1 Introduction;438
50.3;2 Our Works: Public Safety and USAR;439
50.4;3 Proposal: Computational Public Safety;439
50.5;4 Selected Examples of CPS;440
50.5.1;4.1 Smart City;440
50.5.2;4.2 Smart Grid;440
50.5.3;4.3 Transportation Network;441
50.6;5 Internet of Things;441
50.7;6 Data Mining and Predictive Algorithms in Public Safety Domain;442
50.8;7 Discussion and Conclusion;444
50.9;References;445
51;Load Experiments of the vDACS Scheme in Case of the 600 Connectionsby 300 Clients;448
51.1;Abstract;448
51.2;1 Introduction;448
51.3;2 Motivation and Related Research;450
51.4;3 Existing DACS Scheme and WDACS System;452
51.4.1;3.1 Basic Principle of the DACS Scheme;452
51.4.2;3.2 Application to Cloud Environment;454
51.5;4 Cloud Type Virtual PBNM for the Common Use Between Plural Organizations;455
51.5.1;4.1 Concept of the Cloud Type Virtual PBNM for the Common Use Between Plural Organizations;455
51.5.2;4.2 Implementation of the Basic Function in the Cloud Type Virtual PBNM for the Common Usage Between Plural Organizations;455
51.5.3;4.3 Results of the Functional Evaluation;456
51.6;5 Load Experiment Results;457
51.6.1;5.1 Load Experiment Results to Confirm the Function of the Software for Realization of the Cloud Type Virtual PBNM for the Common Use Between Plural Organizations;457
51.6.2;5.2 Load Experiment Results for Applications to the Small and Medium Size Scale Organization;457
51.7;6 Conclusion;459
51.8;Acknowledgments;459
51.9;References;459
52;QoS Aware Virtual Network Embedding in SDN-Based Metro Optical Network;461
52.1;1 Introduction;461
52.2;2 Related Work;463
52.3;3 Resource Allocation Framework for SDN-enabled MON;463
52.3.1;3.1 Overview of the Model;463
52.3.2;3.2 CG-ILP Based Formulation for VN Request Mapping on MEC-DC and WDM Network;465
52.4;4 Performance Evaluation;468
52.4.1;4.1 Simulation Setup;468
52.4.2;4.2 Evaluation Metrics;468
52.4.3;4.3 Performance Measurement;468
52.5;5 Conclusion;471
52.6;References;472
53;Verification of Data Collection Methods for Live Migration Protection Mechanism;473
53.1;1 Introduction;473
53.1.1;1.1 Background;473
53.1.2;1.2 Issues on iKaaS Platform;474
53.1.3;1.3 Our Contribution;474
53.2;2 iKaaS Platform;475
53.3;3 State-of-the-Art Technologies;476
53.4;4 Live Migration Process with Data Protection Mechanism;476
53.5;5 Implementation;478
53.5.1;5.1 Request Based Method;480
53.5.2;5.2 Regular Interval Method;481
53.6;6 Conclusion;482
53.7;References;483
54;Evaluation and Improvement of Farmers Market Information System to Connect with Some Social Stakeholders;484
54.1;1 Introduction;484
54.2;2 Related Work;485
54.3;3 Developed System;486
54.3.1;3.1 Methodology;486
54.3.2;3.2 System Features and Overview;487
54.3.3;3.3 System Design;487
54.3.4;3.4 New Functions;487
54.4;4 Evaluation of System Effectiveness;489
54.4.1;4.1 Experiment on Farmer's Time to Access Market Information;489
54.4.2;4.2 Experiment on Farmer's Income;491
54.4.3;4.3 Experiment on System Usability;491
54.4.4;4.4 Comparing System Effectiveness with Related Work;493
54.5;5 Discussion;493
54.5.1;5.1 Instant Access to Market Information;493
54.5.2;5.2 Improved Incomes to Farmers;493
54.5.3;5.3 Impact of SMS, WEB and SWAHILI Language to System Usability;494
54.6;6 Conclusion;494
54.7;References;494
55;Performance Evaluation of a Learning Logger System for Active Learning Using Smartphone;496
55.1;Abstract;496
55.2;1 Introduction;496
55.3;2 ALS: Active Learning System;497
55.4;3 Flow of Interactive Lecture;499
55.5;4 Interface for Interactive Lecture;501
55.6;5 Performance Evaluation of AVS;502
55.7;6 Conclusions;503
55.8;References;504
56;Validation of 3D Convolutional Neural Networks for Customer Satisfaction Estimation Using Videos;506
56.1;1 Introduction;506
56.2;2 Perception Correction Hypotheses;507
56.3;3 Preliminary Experiment;508
56.3.1;3.1 Experimental Procedure;508
56.3.2;3.2 Experimental Result;509
56.4;4 Estimation Expectation and Satisfaction;510
56.4.1;4.1 3D-CNN;510
56.4.2;4.2 Data Preparation;511
56.4.3;4.3 Experiments;512
56.5;5 Discussion and Future Work;514
56.6;6 Conclusion;514
56.7;References;514
57;Hybrid Learning Using Profit Sharing and Genetic Algorithm for Partially Observable Markov Decision Processes;516
57.1;1 Introduction;516
57.2;2 POMDPs;517
57.3;3 Hybrid Learning Using PS and GA;518
57.3.1;3.1 Profit Sharing;519
57.3.2;3.2 Crossover;520
57.3.3;3.3 Fitness Calculation;521
57.3.4;3.4 Mutation;522
57.4;4 Related Research;522
57.5;5 Performance Experiment Under POMDP;523
57.6;6 Adaptability Experiment for Environmental Changes;524
57.7;7 Conclusion;527
57.8;References;527
58;Resource Propagation Algorithm to Reinforce Knowledge Base in Linked Data;529
58.1;Abstract;529
58.2;1 Introduction;529
58.3;2 Link Prediction;530
58.4;3 Resource Propagation Algorithm;531
58.4.1;3.1 Loading Turtle Data;531
58.4.2;3.2 Conversion from Turtle Data to Graph Data Considering Predicates;531
58.4.3;3.3 Link Prediction Considering Semantic Distance;531
58.4.4;3.4 Reconstruction of Turtle Data Using the Link Predicted Values;532
58.5;4 Experiments;532
58.6;5 Conclusions;536
58.7;Acknowledgement;536
58.8;References;536
59;Metadata Complement Method by Linked Open Data for Literature Search;537
59.1;Abstract;537
59.2;1 Introduction;537
59.3;2 I-Scover System Outline;538
59.4;3 Literature Search Support System;539
59.4.1;3.1 Keyword Ranking Analysis;540
59.4.2;3.2 Co-occurring Words Analysis;540
59.4.3;3.3 Keywords Estimation;541
59.5;4 Evaluation;544
59.6;5 Conclusions;544
59.7;Acknowledgments;544
59.8;References;544
60;Neuro-Evolutionary Approach to Multi-objective Optimization in One-Player Mahjong;545
60.1;1 Introduction;545
60.2;2 One-Player Mahjong;546
60.2.1;2.1 Terminology;547
60.2.2;2.2 Related Works;548
60.2.3;2.3 Multiobjective Optimization;549
60.3;3 Modular Multi-objective Neuro-Evolution of Augmenting Topologies (MM-NEAT);549
60.3.1;3.1 Modular Network;549
60.3.2;3.2 Module Mutation;549
60.4;4 Experiment;551
60.4.1;4.1 Experimental Setup;551
60.4.2;4.2 Result;552
60.5;5 Conclusion;555
60.6;References;555
61;Tor Fingerprinting: Tor Browser Can Mitigate Browser Fingerprinting?;557
61.1;Abstract;557
61.2;1 Introduction;557
61.3;2 Related Work on Browser Fingerprinting;558
61.4;3 De-Anonymizing Attacks;559
61.4.1;3.1 Related Attacks Against Tor Browser;559
61.4.2;3.2 Current Anti-fingerprinting;560
61.5;4 Tor Fingerprinting;562
61.5.1;4.1 HTTP Header;562
61.5.2;4.2 Content Window Size;562
61.5.3;4.3 Font List;562
61.5.4;4.4 SSE2 Test;563
61.5.5;4.5 Estimated Number of Cores;563
61.5.6;4.6 Refresh Rate;563
61.5.7;4.7 Web Storage;564
61.6;5 Experiments;564
61.6.1;5.1 Collected Samples;564
61.6.2;5.2 Observed Results;564
61.6.3;5.3 Tracking with Tor Fingerprinting;565
61.7;6 Considerations;566
61.7.1;6.1 Amount of Samples;566
61.7.2;6.2 Tracking with Tor Fingerprinting;566
61.8;7 Conclusions;568
61.9;Acknowledgments;568
61.10;References;568
62;Study on Persuasion Effect of Computer VirusMeasures Based on Collective ProtectionMotivation Theory;571
62.1;Abstract;571
62.2;1 Introduction;571
62.3;2 Related Research Work;572
62.4;3 Threat Appeals Model for Information Security;572
62.4.1;3.1 Collective Protection Motivation Theory;572
62.4.2;3.2 Threat Appeals Model;573
62.5;4 Investigation of Protection Motivation;573
62.5.1;4.1 Questionnaire Survey;573
62.5.2;4.2 Targets;574
62.5.3;4.3 Analytical Method;575
62.5.4;4.4 Analytical Results;575
62.6;5 Discussion;578
62.7;6 Conclusions;579
62.8;Acknowledgements;580
62.9;Appendix: Decision of Latent Variables for Measurement Behavior Intention Model;580
62.10;References;580
63;Empirical Evaluation of Rhythm-Based Authentication Method for Mobile Devices;582
63.1;1 Introduction;582
63.2;2 Related Work;583
63.2.1;2.1 Biometrics Authentication;583
63.2.2;2.2 Authentication Method Resistant to Shoulder-Surfing Attacks;584
63.3;3 Conventional RA Method;584
63.4;4 Improved RA Method;586
63.4.1;4.1 RandomForest;586
63.4.2;4.2 Procedure of Our Improved RA Method;586
63.5;5 Performance Evaluation;587
63.5.1;5.1 Experimental Environment;587
63.5.2;5.2 Feature Importance;588
63.6;6 Conclusion;589
63.7;References;590
64;Slyware Prevention: Threat of Websites Inducing Accidental Taps and Countermeasures;592
64.1;Abstract;592
64.2;1 Introduction;592
64.3;2 Slyware;593
64.3.1;2.1 Mistap-Slyware;593
64.3.2;2.2 Dishonest/Illegal Acts Using Mistaps;594
64.4;3 Related Work;595
64.4.1;3.1 Approach for Suppressing the Occurrence of Mistaps;595
64.4.2;3.2 Approach for Suppressing the Occurrence of Mistransitions;595
64.5;4 Countermeasure Against Mistap-Slyware;596
64.5.1;4.1 Concept;596
64.5.2;4.2 Proposed Method;597
64.6;5 Basic Experiment;597
64.6.1;5.1 Purpose;597
64.6.2;5.2 Experimental Web Pages;598
64.6.3;5.3 Experimental Settings;600
64.6.4;5.4 Method Settings;600
64.6.5;5.5 Evaluation Items;601
64.7;6 Experimental Results;603
64.7.1;6.1 Safety Evaluation;603
64.7.2;6.2 Usability Evaluation;603
64.7.3;6.3 Interview Results;604
64.8;7 Conclusion;604
64.9;References;605
65;An Efficient Privacy-Preserving Comparison Protocol;606
65.1;1 Introduction;606
65.1.1;1.1 Prior Works;607
65.1.2;1.2 Background and Our Contribution;608
65.2;2 Secure Comparison Protocol;608
65.2.1;2.1 The DGK Protocol;608
65.2.2;2.2 Our Protocol Using Asymmetric SwHE;609
65.3;3 Packing Method for Secure Comparison Protocol;611
65.4;4 Secure Integers Comparison Computation;613
65.5;5 Performance Evaluation;614
65.5.1;5.1 Preliminaries;614
65.5.2;5.2 Experimental Setup;615
65.5.3;5.3 Experimental Results;615
65.6;6 Conclusions;616
65.7;References;617
66;A k-nearest Neighbour Query Processing Strategy Using the mqr-tree;619
66.1;1 Introduction;619
66.2;2 Related Work and Background;620
66.2.1;2.1 k-nearest Neighbour Strategies;620
66.2.2;2.2 mqr-tree;621
66.3;3 An mqr-tree-Based k-Nearest Neighbour Strategy;622
66.4;4 Evaluation;624
66.4.1;4.1 Methodology;624
66.4.2;4.2 Results;626
66.4.3;4.3 Discussion;629
66.5;5 Conclusion;630
66.6;References;630
67;Dynamic Resource Adaptation Method by Cooperative User Devices in Wireless Network;631
67.1;Abstract;631
67.2;1 Introduction;631
67.3;2 System Overview;633
67.4;3 Cooperative Device Selection Algorithm;635
67.5;4 Prototype System;636
67.6;5 Performance Evaluation;637
67.7;6 Conclusion;639
67.8;References;640
68;A Method for Improving Cache Hit Ratio by Virtual Capacity Multiplication;641
68.1;1 Introduction;641
68.2;2 Procedure of NDN;642
68.2.1;2.1 Construction of CR on NDN;643
68.2.2;2.2 Basic Procedure of NDN;643
68.3;3 Contents Caching and Its Problem by LRU on NDN;644
68.4;4 Virtual Capacity Multiplication;644
68.4.1;4.1 Overview of VCM;645
68.5;5 Perfromance Evaluation;647
68.5.1;5.1 Evaluation Environment;647
68.5.2;5.2 Characteristics of Cache Hit Ratio--Interest Generation Rate;649
68.5.3;5.3 Performance Evaluation Under Varying Number of CRs;650
68.5.4;5.4 Performance Evaluation Under Varying both Number of CRs and Capacity of Each CR;651
68.6;6 Conclusion;651
68.7;References;651
69;LEAS: A Load-Aware Energy-Efficient Adaptive Scheduling for Heterogeneous Wireless Sensor Networks;653
69.1;Abstract;653
69.2;1 Introduction;653
69.3;2 Related Work;654
69.4;3 Load-Aware Energy-Efficient Adaptive Scheduling;655
69.4.1;3.1 Random Wakeup;656
69.4.2;3.2 Adaptation to Network Conditions;657
69.4.2.1;3.2.1 Residual Energy Levels;657
69.4.2.2;3.2.2 Network Load;658
69.5;4 Performance Evaluation;659
69.5.1;4.1 Effect of Threshold;659
69.5.2;4.2 Adaptation to Heterogeneous Energy Levels;661
69.5.3;4.3 Adaptation to Load;662
69.6;5 Conclusion;663
69.7;References;663
70;GD-CAR: A Genetic Algorithm Based Dynamic Context Aware Routing Protocol for Opportunistic Networks;664
70.1;1 Introduction;664
70.2;2 Proposed Protocol for OppNets;666
70.2.1;2.1 Dynamic Context Management;667
70.2.2;2.2 GD-CAR Protocol;667
70.3;3 Simulation Setup and Results;670
70.3.1;3.1 Simulation Setup;670
70.3.2;3.2 Simulation Results;671
70.4;4 Conclusion and Future Work;674
70.5;References;674
71;The 12 International Workshop on Network-based Virtual Reality and Tele-existence (INVITE-2017);676
72;Implementation of a Community-Based Disaster Prevention Information System;677
72.1;Abstract;677
72.2;1 Introduction;677
72.3;2 Purpose of Research;678
72.4;3 Disaster Information Input System;678
72.5;4 Disaster Information Output System;680
72.6;5 Disaster Information Notification System;683
72.7;6 Evaluation;684
72.8;7 Conclusion;686
72.9;Acknowledgments;686
72.10;References;686
73;An Automatic Image Registration Method Using Downhill Simplex Method and Its Applications;687
73.1;Abstract;687
73.2;1 Introduction;687
73.3;2 Previous Works;688
73.4;3 An Image Registration Using Downhill Simplex Method;689
73.4.1;3.1 Initial Position Calculation;689
73.4.2;3.2 An Evaluation Method for Mutual Information with a Limited Range;690
73.4.3;3.3 MI Computation and Convergence Condition;690
73.5;4 Experimental Results;693
73.6;5 Conclusion;694
73.7;Acknowledgments;694
73.8;References;695
74;Multilingual Information Service Based on Combination of Smartphone and Digital Signage;696
74.1;Abstract;696
74.2;1 Introduction;696
74.3;2 Required Function in Multilingual Information Service;697
74.3.1;2.1 Multilingual Push Message on Smartphone;697
74.3.2;2.2 Web Information in Native Language;698
74.3.3;2.3 Multilingual Digital Signage;698
74.4;3 System Construction;699
74.4.1;3.1 Multilingual Push Notification Subsystem;700
74.4.2;3.2 Multilingual Web Information Access Subsystem;700
74.4.3;3.3 Multilingual Digital Signage Subsystem;701
74.5;4 Evaluation Experiment;702
74.6;5 Conclusions;704
74.7;Acknowledgement;705
74.8;References;705
75;Ultra Definition Display Environment for Disaster Management GIS;706
75.1;Abstract;706
75.2;1 Introduction;706
75.3;2 Related Works;707
75.4;3 Design of LIVEWall System;707
75.4.1;3.1 System Overview;707
75.4.2;3.2 Disaster State Information;709
75.4.3;3.3 Workspaces;709
75.4.4;3.4 Network Consideration for Disaster;710
75.5;4 Interface Design and Implementation of Components;711
75.5.1;4.1 State Report Device;711
75.5.2;4.2 Workspace Controller;712
75.5.3;4.3 Presentation Host and TDW;713
75.5.4;4.4 LIVEWall Manager;713
75.6;5 Conclusions;714
75.7;Acknowledgement;715
75.8;References;715
76;A Study on the Operation of Infrastructure Management System with Citizens’ Participation Using the ICT Technology;716
76.1;Abstract;716
76.2;1 Introduction;716
76.3;2 Development of the System to Gathering Infrastructure Defect Information from Citizens;717
76.4;3 Social Experiment of Infrastructure Management System with Citizens’ Participation;718
76.4.1;3.1 Outline of Social Experiment;718
76.4.2;3.2 Awareness Survey of Municipal Employees on System Deployment;719
76.4.3;3.3 Questionnaire Survey for Citizen and Municipal Employees Participating in the Social Experiment;720
76.4.4;3.4 Content and Aggregation of Posted Data;722
76.5;4 Conclusion;724
76.6;References;725
77;Development and Evaluation of Operation Interface for Lesson Using Large-Scale Screen in Elementary and Secondary Education;726
77.1;1 Introduction;726
77.2;2 Related Work;727
77.3;3 Proposal and Implementation of Operation Interface;728
77.3.1;3.1 Requirements for Operation Interface;728
77.3.2;3.2 Implementation of Interface for Screen Operation;728
77.4;4 Evaluation;730
77.5;5 Conclusion and Future Work;731
77.6;References;732
78;Implementation of Multimedia Contents for Supporting Different Types of Self-learning;733
78.1;Abstract;733
78.2;1 Introduction;733
78.3;2 Educational Multimedia Contents;734
78.4;3 Construction Flow for Educational Multimedia Contents;735
78.5;4 Implementation;737
78.6;5 Conclusions;740
78.7;References;740
79;Development of Integrated Visual Analytic Tool with 3D Visualization;742
79.1;Abstract;742
79.2;1 Introduction;742
79.3;2 System Overview;743
79.4;3 Implementation of the First Prototype;743
79.4.1;3.1 Multivariate Color-Map for Data Extraction;743
79.4.2;3.2 Free Hand Color-Map Setting;744
79.4.3;3.3 Filtering with Parallel Coordinates Plot;745
79.4.4;3.4 Remote Visualization with WebGL;745
79.5;4 Potential Customer’s Survey;747
79.6;5 Conclusion;747
79.7;Acknowledgments;748
79.8;References;748
80;The 11 International Workshop on Advanced Distributed and Parallel Network Applications (ADPNA-2017);749
81;Hybrid Replication Schemes of Processes in Energy-Efficient Server Clusters;750
81.1;1 Introduction;750
81.2;2 System Model;751
81.3;3 Type of Replicas;753
81.3.1;3.1 Components of a Replica;753
81.3.2;3.2 Dependency of Components;753
81.4;4 Electric Energy Consumption;755
81.5;5 Hybrid Replication;756
81.6;6 Evaluation;758
81.7;7 Concluding Remarks;761
81.8;References;761
82;Gossip-Style Message Dissemination Based on Biconnected Components;762
82.1;1 Introduction;762
82.2;2 Related Work;763
82.3;3 System Model;764
82.4;4 Gossip-Style Message Dissemination Protocol Based on Biconnected Components;764
82.4.1;4.1 Matrix for Biconnected Components;765
82.4.2;4.2 The Protocol for Message Dissemination;765
82.5;5 Performance Evaluation;766
82.5.1;5.1 Environment and Parameters;766
82.5.2;5.2 Performance Metrics;767
82.6;6 Simulation Result;768
82.7;7 Conclusion;768
82.8;References;768
83;Energy Efficient Raft Consensus Algorithm;770
83.1;1 Introduction;770
83.1.1;1.1 Contribution;770
83.2;2 Related Work;771
83.3;3 System Model and Problem Statement;771
83.4;4 Raft Consensus Algorithm;772
83.4.1;4.1 Roles of Nodes;772
83.4.2;4.2 Leader Election;772
83.4.3;4.3 Log Replication;773
83.5;5 Energy Efficient Raft Consensus Algorithm;774
83.5.1;5.1 Suspended Nodes;774
83.5.2;5.2 Resume Messages;774
83.6;6 Performance Evaluation;775
83.6.1;6.1 Environment, Parameters and Performance Criterion;775
83.6.2;6.2 On the Number of Messages with the Suspended Rate;776
83.6.3;6.3 The Impact of Failures on the Number of Messages;776
83.7;7 Conclusion;777
83.8;References;777
84;Scalable Distributed Data Analysis on Structured P2P Network;779
84.1;1 Introduction;779
84.2;2 Distributed Data Aggregation on Structured P2P Network;780
84.3;3 Distributed Data Analysis on Structured P2P Network;783
84.4;4 Simulation Results;784
84.5;5 Conclusion;786
84.6;References;787
85;Risk Assessment for Privacy Protection of Information Literacy Beginners in Big Data Era;788
85.1;Abstract;788
85.2;1 Introduction;788
85.3;2 Examples and Issues of Big Data Utilization;789
85.3.1;2.1 Practical Use Cases and Issues of Big Data Utilization;789
85.3.2;2.2 Definition of Information Literacy Beginner;791
85.3.3;2.3 Related Work;791
85.4;3 Risk Assessment: Qualitative Evaluation of Privacy Protection of Information Literacy Beginners in Big Data Utilization;792
85.4.1;3.1 Extraction of Risk Factors;792
85.4.2;3.2 Derivation of Proposed Measures by Risk Matrix Method;792
85.5;4 Risk Assessment: Quantitative Evaluation of Privacy Protection of Information Literacy Beginnersin Big Data Use;794
85.5.1;4.1 Risk Formula;795
85.5.1.1;4.1.1 Approximation of Asset Value;795
85.5.1.2;4.1.2 Approximation of Threat Value;795
85.5.1.3;4.1.3 Approximation of Value of Vulnerability;796
85.5.2;4.2 Calculation of Risk Value;796
85.5.3;4.3 Discussion;797
85.6;5 Conclusion;798
85.7;Acknowledgments;798
85.8;References;798
86;Performance Evaluation of Peer--to--Peer Network Applications on Multiple Overlay Networks;801
86.1;1 Introduction;801
86.2;2 Construction of Logical Networks;801
86.2.1;2.1 Node Coordination System;801
86.2.2;2.2 Provision of Network Information by ISP;802
86.3;3 Basic Concept of Proposed System;802
86.3.1;3.1 System Architecture;802
86.3.2;3.2 Prototype of Proposed System;803
86.4;4 Performance Evaluation;804
86.4.1;4.1 Simulation Conditons;804
86.4.2;4.2 Simulation Results;805
86.5;5 Summary;807
86.6;References;807
87;The 8 International Workshop on Heterogeneous Networking Environments and Technologies (HETNET-2017);808
88;Residential Area Power Management Using Genetic Algorithm and Biogeography Based Optimization in Smart Grid;809
88.1;1 Introduction;809
88.2;2 Related Work;810
88.3;3 Problem Statement;812
88.4;4 System Model;812
88.4.1;4.1 GA;813
88.4.2;4.2 BBO;813
88.4.3;4.3 Categorization of Appliances;814
88.5;5 Simulations and Discussions;815
88.6;6 Conclusion;818
88.7;References;818
89;A Social Spider Optimization Based Home Energy Management System;820
89.1;1 Introduction;820
89.2;2 Related Work;822
89.3;3 System Model;823
89.3.1;3.1 Social Spider Optimization Algorithm;825
89.3.2;3.2 BFA Optimization Technique;826
89.4;4 Problem Statement;826
89.5;5 Simulations and Discussions;826
89.6;6 Conclusion;828
89.7;References;828
90;Collecting Data in Sensor Networks Using Homesick Lévy Walk;829
90.1;1 Introduction;829
90.2;2 Related Work;830
90.3;3 System Model;830
90.4;4 Homesick Lévy Walk on Grid Graphs;831
90.5;5 Performance Analysis;832
90.5.1;5.1 Environment and Parameters;832
90.5.2;5.2 Performance Metrics;832
90.5.3;5.3 Simulation Result;833
90.6;6 Conclusion;835
90.7;References;835
91;Privacy Preservation for Trajectory Data Publishing and Heuristic Approach;837
91.1;1 Introduction;837
91.2;2 Problem Definition;840
91.3;3 Algorithm;841
91.4;4 Experimental Evaluation;842
91.4.1;4.1 Effectiveness;843
91.4.2;4.2 Efficiency;845
91.5;5 Conclusion;846
91.6;References;846
92;The 8 International Workshop on Intelligent Sensors and Smart Environments (ISSE-2017);848
93;A Transmission Method to Guarantee QoS Parameters in Wireless Sensor Network;849
93.1;Abstract;849
93.2;1 Introduction;849
93.3;2 The Related Work;850
93.4;3 Chinese Reminder Theorem;851
93.5;4 Proposed Approach;853
93.6;5 Performance Evaluation;855
93.7;6 Conclusion;858
93.8;References;858
94;3D Model Generation of Black Cattle Using Multiple RGB Cameras for Their BCS;860
94.1;Abstract;860
94.2;1 Introduction;860
94.3;2 Related Work;861
94.4;3 System Overview;862
94.5;4 3D Model Generation of Eight RGB Cameras System by Multicolor Attributed Voxel Based Method;863
94.5.1;4.1 Taking Camera Calibration Images;863
94.5.2;4.2 Taking Camera Images of Cows;863
94.5.3;4.3 3D Model Data Generation of Cows;864
94.6;5 Conclusions;868
94.7;Acknowledgement;869
94.8;References;869
95;Load Scheduling Optimization Using Heuristic Techniques and Combined Price Signal;870
95.1;1 Introduction;870
95.2;2 Literature Review and Motivation;872
95.3;3 Proposed System;873
95.4;4 Simulation Results and Discussion;877
95.5;5 Conclusion;879
95.6;References;880
96;Home Energy Managment System Using Meta-heuristic Techniques;881
96.1;1 Introduction;881
96.2;2 Related Work;883
96.3;3 Problem Statement;886
96.4;4 Proposed Model;886
96.4.1;4.1 Optimization Techniques;888
96.5;5 Results Evaluation and Simulations;888
96.6;6 Conclusion;891
96.7;References;892
97;Improvement of Indoor Position Estimation of Open-Campus Event System Using BLE Beacon;893
97.1;1 Introduction;893
97.2;2 MMDAgent;894
97.3;3 Previous Research;894
97.3.1;3.1 Voice Dialogue Mode;894
97.3.2;3.2 Features of This System;895
97.3.3;3.3 Acquisition of Positional Information;896
97.3.4;3.4 Algorithm of Walking Path Estimation Using Dead Reckoning;896
97.3.5;3.5 Problem;896
97.4;4 Proposed Method;896
97.4.1;4.1 Acquisition of BLE Beacon Information;897
97.4.2;4.2 Management of BLE Beacon Information;897
97.4.3;4.3 Correction of the Current Location;897
97.4.4;4.4 Algorithm of Correction of Current Location;898
97.5;5 Experiment;898
97.5.1;5.1 Outline;898
97.5.2;5.2 Results;899
97.6;6 Conclusion;899
97.7;References;900
98;Development of Review Selection System Reflecting User Preference Using SVM;901
98.1;1 Introduction;901
98.2;2 Related Works;902
98.2.1;2.1 Research Investigating Classification of Review Sentences that Evoke User Interests;902
98.2.2;2.2 Research Investigating Discrimination of Review Sentence Usefulness;903
98.2.3;2.3 Position of the Present Study;903
98.3;3 Difficulties of Classifying Reviews According to User Preferences;903
98.3.1;3.1 F1: Mistaken User Preference Is Extracted;904
98.3.2;3.2 F2: Notation Variation of Words in a Review;904
98.3.3;3.3 F3: Losing of Co-Occurrence Relation of Feature Quantity;904
98.4;4 Design of the Proposed System;906
98.4.1;4.1 Solution of F1 (Mistaken User Preference Is Extracted);906
98.4.2;4.2 Solution of F2 (Notation Variation of Words in Reviews);907
98.4.3;4.3 Solution of F3 (Losing a Co-Occurrence Relation of Feature Quantity);907
98.5;5 Implementation of the Proposed System;908
98.6;6 Conclusion and Future Works;909
98.7;References;909
99;The 8 International Workshop on Trustworthy Computing and Security (TwCSec-2017);910
100;Function Secret Sharing Using Fourier Basis;911
100.1;1 Introduction;911
100.1.1;1.1 Our Contribution;913
100.2;2 Preliminaries;913
100.2.1;2.1 Definitions;913
100.2.2;2.2 Basis Functions;915
100.3;3 Our Proposal;916
100.3.1;3.1 General FSS Scheme for Succinct Functions;916
100.3.2;3.2 FSS Scheme for Succinct Linear Combinations of Point Functions;918
100.3.3;3.3 FSS Scheme for the Fourier Basis;918
100.3.4;3.4 FSS Scheme for Succinct Functions w.r.t. the Fourier Basis;920
100.4;4 Conclusion;920
100.5;References;921
101;Secure Non-transferable Proxy Re-encryption for Group Membership and Non-membership;922
101.1;1 Introduction;922
101.1.1;1.1 Related Works;923
101.1.2;1.2 Comparison with Previous Works;923
101.1.3;1.3 Our Contributions;924
101.2;2 Preliminaries;924
101.2.1;2.1 Bilinear Map;925
101.2.2;2.2 Assumption;925
101.2.3;2.3 Security Model;926
101.3;3 Construction of the Scheme;927
101.4;4 Security;929
101.5;5 Conclusion;932
101.6;References;932
102;A Performance Evaluation of Data Storage Approach for High Availability and Confidentiality on Multi ...;934
102.1;Abstract;934
102.2;1 Introduction;934
102.3;2 Related Work;935
102.4;3 Proposed Method;935
102.5;4 Implementation;940
102.6;5 Evaluation;942
102.7;6 Conclusion;944
102.8;Acknowledgments;945
102.9;References;945
103;Risk of Re-Identification Based on Euclidean Distance in Anonymized Data PWSCUP2015;947
103.1;1 Introduction;947
103.2;2 Utility and Security;948
103.2.1;2.1 The Synthesized Micro Dataset;948
103.2.2;2.2 Utility and Security;948
103.2.3;2.3 The Existing Anonymization Methods;949
103.3;3 Re-Identification Method by Using the Euclidean Distance;950
103.3.1;3.1 Identify-euc;950
103.3.2;3.2 EUC1 and EUC2;950
103.4;4 Evaluation;952
103.4.1;4.1 The Anonymized Datasets of PWSCUP2015;952
103.4.2;4.2 The Anonymized Datasets by a Single Method;952
103.4.3;4.3 Expected Effects;954
103.4.4;4.4 The Result of Evaluation;955
103.4.5;4.5 Comparative EUC1 and the Existing Methods;955
103.4.6;4.6 Discussion;956
103.4.7;4.7 Evaluation the Ability of Our Method;957
103.5;5 Conclusions;958
103.6;References;958
104;Highly Responsive Distributed Denial-of-Service Attacks Detection by Using Real-Time Burst Detection Method;960
104.1;1 Introduction;960
104.2;2 Real-Time Burst Detection Method;961
104.2.1;2.1 Data Structure;962
104.2.2;2.2 Cell Generation;962
104.2.3;2.3 Burst Detection Methodology;962
104.3;3 Proposed Method;963
104.3.1;3.1 Addition of Continuous Attack Detection Methodology;963
104.3.2;3.2 Suppression of Excessive Detection Events;964
104.4;4 Evaluation Experiment;965
104.4.1;4.1 Computing Environment;965
104.4.2;4.2 Evaluation Index;965
104.4.3;4.3 Data;966
104.4.4;4.4 Evaluation of Detection Accuracy;966
104.4.5;4.5 Evaluation of Computational Efficiency;968
104.5;5 Conclusion;968
104.6;References;969
105;Efficient Secure Arithmetic on Floating Point Numbers;970
105.1;1 Introduction;970
105.2;2 Related Works;971
105.2.1;2.1 Secure Computation for Integer Arithmetic;971
105.2.2;2.2 Secure Computation for Floating Point Numbers;971
105.2.3;2.3 Other Secure Computation Method for Real Numbers;972
105.3;3 Decreasing Computation Time on Secure Arithmetic;972
105.3.1;3.1 Approaches;972
105.3.2;3.2 Finding Significant Factor on Computation Time;973
105.3.3;3.3 Implementation;973
105.3.4;3.4 Improvement Algorithm Implementation;977
105.4;4 Evaluation;978
105.4.1;4.1 Performance of Methods;978
105.4.2;4.2 Performance of Arithmetics;979
105.5;5 Conclusion;979
105.6;References;980
106;An Extension of (2, m(m+1)/2)-Threshold Secret Sharing Schemes;981
106.1;1 Introduction;981
106.1.1;1.1 Requirements in Use of Clouds;981
106.1.2;1.2 Challenges to Be Solved;983
106.1.3;1.3 Secret Sharing Schemes Using Exclusive-OR Operations;984
106.1.4;1.4 The Contrubutions of This Paper;985
106.2;2 Reconsideration of XOR-(2,n)-SSS;985
106.2.1;2.1 Existing Examples of XOR-(2,n)-SSS as a Starting Point;985
106.2.2;2.2 A New Method Proposed in WAIS2013;986
106.2.3;2.3 Introduction of a Concept ``isomorphism'' in XOR-(2,n)-SSS;987
106.2.4;2.4 Definition of 2-Propagation Bases Set and Constructions of XOR-(2,m(m+1)/2)-SSS;988
106.2.5;2.5 New Construction of XOR-(2,m2)-SSS;989
106.3;3 Conclusions and Future Work;991
106.4;References;991
107;High-Speed Forensic Technology Against Targeted Cyber Attacks (Extended Abstract);992
107.1;1 Introduction;992
108;The 7 International Workshop on Information Networking and Wireless Communications (INWC-2017);993
109;A Modified Energy-Aware B.A.T.M.A.N Routing Protocol;994
109.1;1 Introduction;994
109.2;2 B.A.T.M.A.N Routing Protocol;995
109.2.1;2.1 OGM Packet;996
109.2.2;2.2 Originator List (Routing Table);996
109.2.3;2.3 Sequence Numbers, Ranges, and Windows;998
109.2.4;2.4 Broadcasting Originator Messages (OGMs);998
109.2.5;2.5 Receiving Originator Messages (Neighbor Ranking);999
109.3;3 Proposed Method;999
109.3.1;3.1 Energy-Aware OGM Packet;999
109.3.2;3.2 Energy-Aware Originator List (Routing Table);1000
109.3.3;3.3 Energy-Aware Broadcasting of Originator Messages (OGMs);1001
109.3.4;3.4 Energy-Aware Receiving of Originator Messages (Neighbor Ranking);1001
109.4;4 Discussion;1001
109.4.1;4.1 Implementation;1001
109.4.2;4.2 Problems and Issues;1002
109.5;5 Future Works;1002
109.6;References;1002
110;BER Comparison of Constant Envelope DCT and FFT Based OFDM with Phase Modulation;1004
110.1;1 Introduction;1004
110.2;2 Baseband OFDM Signals;1005
110.2.1;2.1 Baseband FFT-OFDM Signal;1005
110.2.2;2.2 Baseband DCT-OFDM Signal;1005
110.3;3 CE-OFDM Transmitter;1006
110.4;4 BER Analysis of CE-OFDM System in AWGN;1007
110.4.1;4.1 Phase Demodulation;1008
110.4.2;4.2 OFDM Receiver;1009
110.4.3;4.3 The Probability of Error;1010
110.4.4;4.4 The Threshold Effect;1011
110.5;5 Results and Discussion;1011
110.6;6 Conclusions;1012
110.7;References;1013
111;Design of Microwave Circuit with Periodic Structure for Channel Switching by Carrier Frequency;1014
111.1;1 Introduction;1014
111.2;2 Measurement of Photonic Crystal Waveguide;1015
111.3;3 Measurement of T-Shaped Branching Waveguide;1016
111.4;4 Conclusion;1018
111.5;References;1018
112;A Message Suppression Method for Inter-Vehicle Communications;1020
112.1;1 Introduction;1020
112.2;2 Delay/Disruption Tolerant Networking;1021
112.3;3 Message Suppression Method for VANETs;1022
112.3.1;3.1 Overview of EMSC;1022
112.3.2;3.2 Message Suppression Time;1023
112.3.3;3.3 Scenario Settings;1024
112.4;4 Simulation Results;1025
112.5;5 Conclusions;1026
112.6;References;1026
113;Demand Side Management Using Strawberry and Enhanced Differential Evolution Algorithms;1028
113.1;1 Introduction;1028
113.2;2 Related Work;1030
113.3;3 Problem Statement;1031
113.4;4 Proposed System Model;1032
113.4.1;4.1 Optimization Algorithms;1032
113.5;5 Simulation Results and Discussion;1034
113.6;6 Conclusion and Future Work;1037
113.7;References;1038
114;A Heuristic Scheduling Approach for Demand Side Energy Management;1040
114.1;1 Introduction;1040
114.2;2 Related Work;1041
114.3;3 Proposed System;1042
114.4;4 Simulation Results;1045
114.5;5 Conclusion;1048
114.6;References;1048
115;The 6 International Workshop on Advances in Data Engineering and Mobile Computing (DEMoC-2017);1049
116;Generating Manzai-Scenario Using Entity Mistake;1050
116.1;1 Introduction;1050
116.2;2 Related Work;1051
116.3;3 Basic Concept;1052
116.3.1;3.1 What Is Manzai?;1052
116.3.2;3.2 Manzai-Robots;1054
116.4;4 Rival Word Extraction Method;1054
116.5;5 Introduction Part Based on Entity Mistake;1055
116.6;6 Experiments;1056
116.6.1;6.1 Experiment 1: Comparing Rival Extraction Method;1056
116.6.2;6.2 Experiment 2: Benefits of the Entity Mistake;1057
116.7;7 Conclusion;1059
116.8;References;1059
117;A k-anonymized Text Generation Method;1061
117.1;1 Introduction;1061
117.2;2 Related Work;1062
117.3;3 k-anonymization of Texts;1063
117.3.1;3.1 Generation of Anonymization Dictionary;1064
117.3.2;3.2 Applying Anonymization Dictionary to Text;1065
117.4;4 Case Study;1066
117.5;5 Conclusion;1068
117.6;References;1068
118;A System Design for Detecting Moving Objects in Capturing Video Images Using Laser Range Scanners;1070
118.1;1 Introduction;1070
118.2;2 Moving Object Positioning System;1071
118.2.1;2.1 System Configuration;1071
118.2.2;2.2 Motion Detection by Laser Range Scanner;1072
118.2.3;2.3 Motion Detection by Camera Image Analysis in Coordination with a Laser Range Scanner;1074
118.3;3 Preliminary Performance Evaluation of the Prototype System;1075
118.3.1;3.1 Fundamental Evaluation with One Camera;1076
118.3.2;3.2 Additional Evaluation with Two Cameras;1077
118.4;4 Conclusion;1079
118.5;References;1079
119;Proposition of Division-Based Broadcasting System for Delivering Multiple Videos;1080
119.1;1 Introduction;1080
119.2;2 Division-Based Broadcasting for Delivering Single Video;1081
119.2.1;2.1 VoD and Broadcasting;1081
119.2.2;2.2 Waiting Time;1081
119.3;3 Related Works;1081
119.3.1;3.1 Scheduling Methods in Division-Based Broadcasting;1081
119.3.2;3.2 Division-Based Broadcasting System;1082
119.4;4 Division-Based Broadcasting for Multiple Videos;1083
119.4.1;4.1 Outline;1083
119.4.2;4.2 Scheduling Methods for Delivering Multiple Videos;1083
119.4.3;4.3 Assumed Environment;1084
119.4.4;4.4 MV-B Method;1084
119.4.5;4.5 MV-R Method;1084
119.5;5 Delivery System in Division-Based Broadcasting;1085
119.5.1;5.1 Outline;1085
119.5.2;5.2 Synchronization of Timing for Delivering Segments;1085
119.5.3;5.3 Simultaneous Playback of Multiple Videos;1086
119.6;6 Design;1087
119.6.1;6.1 Synchronous Delivery for Multiple Videos;1087
119.6.2;6.2 Sequential Playback for Multiple Videos;1088
119.6.3;6.3 Data Format;1088
119.6.4;6.4 Assumed Environment;1089
119.6.5;6.5 Implementation;1089
119.7;7 Conclusion;1089
119.8;References;1090
120;The 6 International Workshop on Web Services and Social Media (WSSM-2017);1091
121;A Block-Based Structure Editor for the English Language;1092
121.1;1 Introduction;1092
121.2;2 System Design;1093
121.2.1;2.1 Field for Generating Blocks;1094
121.2.2;2.2 Field for Combining Blocks;1095
121.2.3;2.3 Field to Show the Sentence;1096
121.2.4;2.4 Field to Show Structure Trees;1096
121.3;3 Implementation;1097
121.3.1;3.1 Definition and Internal Data Structure of Edit Field Object;1097
121.3.2;3.2 Definition and Internal Data Structure of Block Object;1097
121.3.3;3.3 Definition and Internal Structure of Derivation Rule Object;1098
121.3.4;3.4 Function for Generating Blocks;1098
121.3.5;3.5 Function for Changing the Selected Symbol Type;1098
121.3.6;3.6 Function for Combining Blocks;1099
121.3.7;3.7 Function for Decomposing Composite Block;1099
121.3.8;3.8 Function for Suggesting Candidate Blocks to Be Combined with a Specified Block;1099
121.3.9;3.9 Function for Showing the Structure Trees;1100
121.4;4 Conclusions;1100
121.5;References;1101
122;A Web Application for Passengers to Watch Coming Buses in Rural Areas;1102
122.1;1 Introduction;1102
122.2;2 System Overview;1103
122.3;3 Functions;1104
122.3.1;3.1 Display of Bus Stops and Routes;1104
122.3.2;3.2 Display of the Current Location of the Bus;1105
122.3.3;3.3 Sentry and Alert;1106
122.4;4 Implementation;1107
122.4.1;4.1 Display of Bus Stops and Routes;1107
122.4.2;4.2 Display of the Current Location of the Bus;1108
122.4.3;4.3 Sentry and Alert;1109
122.5;5 Conclusions;1109
122.6;References;1109
123;An HTML5 Implementation of Web-Com for Recording Chalk Annotations and Talk Voices onto Web Pages;1111
123.1;1 Introduction;1111
123.2;2 Recording;1112
123.3;3 Playing Back;1114
123.4;4 Conclusions;1116
123.5;References;1116
124;A Web-Based Visualization System for Interdisciplinary Research Using Japanese Local Political Corpus;1117
124.1;1 Introduction;1117
124.2;2 System Architecture;1118
124.2.1;2.1 Outline;1118
124.2.2;2.2 Japanese Political Corpus;1119
124.3;3 System Features;1120
124.3.1;3.1 Full-Text Search for Utterances;1120
124.3.2;3.2 Context Word Extraction Using KWIC;1121
124.3.3;3.3 Map Visualization with Full-Text Search;1121
124.3.4;3.4 Panel Data with Full-Text Search;1122
124.3.5;3.5 Extracting Political Keywords Using TF--IDF;1123
124.4;4 Conclusion;1125
124.5;References;1125
125;Text-Based Video Scene Segmentation: A Novel Method to Determine Shot Boundaries;1127
125.1;1 Introduction;1127
125.2;2 Related Works;1128
125.2.1;2.1 Searching Video Content;1129
125.2.2;2.2 Video Segmentation;1129
125.3;3 Our Proposal;1129
125.3.1;3.1 Overview of the Method;1130
125.3.2;3.2 The Criteria of Segmentation;1130
125.4;4 Experiment;1131
125.5;5 Conclusions and Future Work;1135
125.6;References;1135
126;ELVIDS: Video Search System Prototype with a Three-Level Hierarchy Model;1137
126.1;Abstract;1137
126.2;1 Introduction;1137
126.3;2 Issues of Video Use in Humanities and Social Science Research;1137
126.4;3 Video Search System Prototype with a Three-Level Hierarchy Model;1138
126.4.1;3.1 Database;1138
126.4.2;3.2 Interface;1140
126.5;4 Evaluation Experiment;1142
126.5.1;4.1 Method;1142
126.5.2;4.2 Results;1142
126.6;5 Related Work;1143
126.7;6 Conclusions and Further Work;1144
126.7.1;6.1 Conclusions;1144
126.7.2;6.2 Further Work;1144
126.8;Acknowledgement;1144
126.9;References;1144
127;Comparison of Typing Efficiency Between PC and Smartphone in the Case of Younger Generations;1146
127.1;1 Introduction;1146
127.1.1;1.1 Difference in Typing Between PC and Smartphone;1147
127.1.2;1.2 Novelty of this Research;1147
127.2;2 Our Problem;1147
127.2.1;2.1 Hypothesis Formation;1147
127.2.2;2.2 Data Necessary for Verification;1148
127.3;3 Hogehoge Typing System;1148
127.3.1;3.1 Composition of Hogehoge Typing;1149
127.3.2;3.2 Data to Acquire and Generate;1149
127.3.3;3.3 Implemented Functions;1150
127.4;4 Implementation and Data Analysis;1151
127.4.1;4.1 How to Use Hogehoge Typing;1151
127.4.2;4.2 Experiment;1152
127.4.3;4.3 Questionnaire Survey;1152
127.4.4;4.4 Analysis;1153
127.5;5 Conclusions;1156
127.6;References;1157
128;Extracting Laboratory Front Pages from University Websites;1158
128.1;1 Introduction;1158
128.2;2 Related Work;1159
128.3;3 Extraction of Laboratory Front Pages from University Websites;1160
128.3.1;3.1 Extraction of Laboratory Front Pages;1160
128.3.2;3.2 Selection of Laboratory Front Pages from URL Link;1160
128.3.3;3.3 Selection of Laboratory Front Pages by Using Rules;1161
128.4;4 Implementation;1162
128.4.1;4.1 Keywords Extraction;1163
128.5;5 Evaluation;1164
128.6;6 Discussion;1165
128.7;7 Conclusions;1165
128.8;References;1166
129;Activity Estimation Using Device Positions of Smartphone Users;1167
129.1;Abstract;1167
129.2;1 Introduction;1167
129.2.1;1.1 Related Work;1168
129.3;2 Moving State and Device Positions;1168
129.4;3 Smartphone Application;1171
129.4.1;3.1 Training Phase Using SVM;1171
129.4.2;3.2 Prediction Phase Using the SVM;1172
129.5;4 Experiment and Result;1173
129.6;5 Conclusion;1175
129.7;References;1175
130;A Topic Trend on P2P Based Social Media;1177
130.1;1 Introduction;1177
130.2;2 Literature Survey;1178
130.3;3 P2P-Based SNS;1178
130.4;4 Inference Process;1180
130.5;5 Experimental Result;1181
130.6;6 Conclusion;1183
130.7;References;1184
131;A Method for Extracting Correct Links from Automatic Created Links on Folksonomy;1185
131.1;1 Introduction;1185
131.2;2 Tag Explanatory Article on Folksonomy;1186
131.2.1;2.1 Nico Nico Pedia;1187
131.3;3 Correct Link Extraction Method;1188
131.3.1;3.1 Preprocess;1188
131.3.2;3.2 Mutual Link Extraction;1188
131.3.3;3.3 Algorithm for the Correct Link Extraction;1188
131.4;4 Experiment;1189
131.4.1;4.1 Dataset;1189
131.4.2;4.2 Result;1190
131.5;5 Discussion;1190
131.6;6 Conclusion;1191
131.7;References;1191
132;Author Index;1192