Berthold / Krempl / Feelders | Advances in Intelligent Data Analysis XVIII | Buch | 978-3-030-44583-6 | sack.de

Buch, Englisch, 588 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 902 g

Reihe: Information Systems and Applications, incl. Internet/Web, and HCI

Berthold / Krempl / Feelders

Advances in Intelligent Data Analysis XVIII

18th International Symposium on Intelligent Data Analysis, IDA 2020, Konstanz, Germany, April 27-29, 2020, Proceedings
1. Auflage 2020
ISBN: 978-3-030-44583-6
Verlag: Springer Nature Switzerland

18th International Symposium on Intelligent Data Analysis, IDA 2020, Konstanz, Germany, April 27-29, 2020, Proceedings

Buch, Englisch, 588 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 902 g

Reihe: Information Systems and Applications, incl. Internet/Web, and HCI

ISBN: 978-3-030-44583-6
Verlag: Springer Nature Switzerland


This open access book constitutes the proceedings of the 18th International Conference on Intelligent Data Analysis, IDA 2020, held in Konstanz, Germany, in April 2020.

The 45 full papers presented in this volume were carefully reviewed and selected from 114 submissions. Advancing Intelligent Data Analysis requires novel, potentially game-changing ideas. IDA’s mission is to promote ideas over performance: a solid motivation can be as convincing as exhaustive empirical evaluation.

Berthold / Krempl / Feelders Advances in Intelligent Data Analysis XVIII jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Multivariate Time Series as Images: Imputation Using Convolutional Denoising Autoencoder.- Dual Sequential Variational Autoencoders for Fraud Detection.- A Principled Approach to Analyze Expressiveness and Accuracy of Graph Neural Networks.- Efficient Batch-Incremental Classification Using UMAP for Evolving Data Streams.- GraphMDL: Graph Pattern Selection Based on Minimum Description Length.- Towards Content Sensitivity Analysis.- Gibbs Sampling Subjectively Interesting Tiles.- Even Faster Exact k-Means Clustering.- Ising-Based Consensus Clustering on Special Purpose Hardware.- Transfer Learning by Learning Projections from Target to Source.- Computing Vertex-Vertex Dissimilarities Using Random Trees: Application to Clustering in Graphs.- Towards Evaluation of CNN Performance in Semantically Meaningful Latent Spaces.- Vouw: Geometric Pattern Mining Using the MDL Principle.- A Consensus Approach to Improve NMF Document Clustering.- Discriminative Bias for Learning Probabilistic Sentential Decision Diagrams.- Widening for MDL-Based Retail Signature Discovery.- Addressing the Resolution Limit and the Field of View Limit in Community Mining.- Estimating Uncertainty in Deep Learning for Reporting Confidence: An Application on Cell Type Prediction in Testes Based on Proteomics.- Adversarial Attacks Hidden in Plain Sight.- Enriched Weisfeiler-Lehman Kernel for Improved Graph Clustering of Source Code.- Overlapping Hierarchical Clustering (OHC).- Digital Footprints of International Migration on Twitter.- Percolation-Based Detection of Anomalous Subgraphs in Complex Networks.- A Late-Fusion Approach to Community Detection in Attributed Networks.- Reconciling Predictions in the Regression Setting: an Application to Bus Travel Time Prediction.- A Distribution Dependent and Independent Complexity Analysis of Manifold Regularization.- Actionable Subgroup Discovery and Urban Farm Optimization.- AVATAR - Machine Learning Pipeline Evaluation Using Surrogate Model.- Detection ofDerivative Discontinuities in Observational Data.- Improving Prediction with Causal Probabilistic Variables.- DO-U-Net for Segmentation and Counting.- Enhanced Word Embeddings for Anorexia Nervosa Detection on Social Media.- Event Recognition Based on Classification of Generated Image Captions.- Human-to-AI Coach: Improving Human Inputs to AI Systems.- Aleatoric and Epistemic Uncertainty with Random Forests.- Master your Metrics with Calibration.- Supervised Phrase-Boundary Embeddings.- Predicting Remaining Useful Life with Similarity-Based Priors.- Orometric Methods in Bounded Metric Data.- Interpretable Neuron Structuring with Graph Spectral Regularization.- Comparing the Preservation of Network Properties by Graph Embeddings.- Making Learners (More) Monotone.- Combining Machine Learning and Simulation to a Hybrid Modelling Approach.- LiBRe: Label-Wise Selection of Base Learners in Binary Relevance for Multi-Label Classification.- Angle-Based Crowding Degree Estimation for Many-Objective Optimization.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.