Buch, Englisch, 273 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 470 g
ISBN: 978-981-16-4977-6
Verlag: Springer Nature Singapore
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Energietechnik | Elektrotechnik Energietechnik & Elektrotechnik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Wirtschaftswissenschaften Wirtschaftssektoren & Branchen Energie- & Versorgungswirtschaft
- Wirtschaftswissenschaften Volkswirtschaftslehre Umweltökonomie
Weitere Infos & Material
Introduction to power market data and their characteristics.- Modeling load forecasting uncertainty using deep learning models.- Data-driven load data cleaning and its impacts on forecasting performance.- Generalized cost-oriented load forecasting in economic dispatch.- A monthly electricity consumption forecasting method.- Data-driven pattern extraction for analyzing market bidding behaviors.- Stochastic optimal offering based on probabilistic forecast on aggregated supply curves.- Power market simulation framework based on learning from individual offering strategy.- Deep inverse reinforcement learning for reward function identification in bidding models.- The subspace characteristics and congestion identification of LMP data.- Online transmission topology identification in LMP-based markets.- Day-ahead componential electricity price forecasting.- Quantifying the impact of price forecasting error on market bidding.- Virtual bidding and FTR speculation based on probabilistic LMP forecasting.- Abnormal detection of LMP scenario and data with deep neural networks.