Buch, Englisch, 382 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 800 g
Technology and Application
Buch, Englisch, 382 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 800 g
ISBN: 978-0-12-811995-2
Verlag: William Andrew Publishing
Each chapter is written by an expert in the respective field, pulling in perspectives from both engineers and clinicians to present a multi-disciplinary view. The book targets the implementation of efficient robot strategies to facilitate the re-acquisition of motor skills. This technology incorporates the outcomes of behavioral studies on motor learning and its neural correlates into the design, implementation and validation of robot agents that behave as 'optimal' trainers, efficiently exploiting the structure and plasticity of the human sensorimotor systems. In this context, human-robot interaction plays a paramount role, at both the physical and cognitive level, toward achieving a symbiotic interaction where the human body and the robot can benefit from each other's dynamics.
Zielgruppe
Biomedical Engineers, Clinical Engineers, R&D Professionals, Rehabilitation Engineers and Scientists, Physical and Occupational Therapists, Neurologists, Clinicians and Physiatrists.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1. Physiological basis of neuromotor recovery 2. An overall framework for neurorehabilitation robotics: implications for recovery 3. Biomechatronic design criteria of systems for robot-mediated rehabilitation therapy 4. Actuators and sensors for rehabilitation and prosthetic robots 5. Assistive controllers and modalities for robot-aided neurorehabilitation 6. Exoskeletons for upper limb rehabilitation 7. Exoskeletons for lower limb rehabilitation 8. Performance measures in robot-assisted assessment of sensorimotor functions 9. Computational models of the recovery process in robot-assisted training 10. Control of rehabilitation robots: from guidance to interaction 11. Promoting motivation during robot-assisted rehabilitation 12. Software platforms for integrating robots and virtual environments 13. Twenty+ Years of Robotics for Upper Extremity Rehabilitation following a Stroke 14. Three-dimensional, task-specific robot therapy 15. Robot-assisted therapy of hand function 16. Robot-assisted gait training 17. Wearable robotic applications for neurorehabilitation 18. Robot-assisted rehabilitation in multiple sclerosis 19. Robots for cognitive rehabilitation and symptom management 20. Hybrid NMES-robot devices for training of activities of daily living 21. Robotic techniques for evaluation and training of proprioceptive deficits 22. Psychophysiological responses during robot-assisted rehabilitation 23. The role of muscle synergies in robot-assisted neurorehabilitation 24. Telerehabilitation Robotics