Combating Bad Weather Part II | Buch | 978-1-62705-586-4 | sack.de

Buch, Englisch, 84 Seiten, Paperback, Format (B × H): 187 mm x 235 mm

Reihe: Synthesis Lectures on Image, Video, and Multimedia Processing

Combating Bad Weather Part II

Fog Removal from Image and Video
Erscheinungsjahr 2015
ISBN: 978-1-62705-586-4
Verlag: Morgan & Claypool Publishers

Fog Removal from Image and Video

Buch, Englisch, 84 Seiten, Paperback, Format (B × H): 187 mm x 235 mm

Reihe: Synthesis Lectures on Image, Video, and Multimedia Processing

ISBN: 978-1-62705-586-4
Verlag: Morgan & Claypool Publishers


Every year lives and properties are lost in road accidents. About one-fourth of these accidents are due to low vision in foggy weather. At present, there is no algorithm that is specifically designed for the removal of fog from videos. Application of a single-image fog removal algorithm over each video frame is a time-consuming and costly affair. It is demonstrated that with the intelligent use of temporal redundancy, fog removal algorithms designed for a single image can be extended to the real-time video application. Results confirm that the presented framework used for the extension of the fog removal algorithms for images to videos can reduce the complexity to a great extent with no loss of perceptual quality. This paves the way for the real-life application of the video fog removal algorithm. In order to remove fog, an efficient fog removal algorithm using anisotropic diffusion is developed. The presented fog removal algorithm uses new dark channel assumption and anisotropic diffusion for the initialization and refinement of the airlight map, respectively. Use of anisotropic diffusion helps to estimate the better airlight map estimation. The said fog removal algorithm requires a single image captured by uncalibrated camera system. The anisotropic diffusion-based fog removal algorithm can be applied in both RGB and HSI color space. This book shows that the use of HSI color space reduces the complexity further. The said fog removal algorithm requires pre- and post-processing steps for the better restoration of the foggy image. These pre- and post-processing steps have either data-driven or constant parameters that avoid the user intervention. Presented fog removal algorithm is independent of the intensity of the fog, thus even in the case of the heavy fog presented algorithm performs well. Qualitative and quantitative results confirm that the presented fog removal algorithm outperformed previous algorithms in terms of perceptual quality, color fidelity and execution time. The work presented in this book can find wide application in entertainment industries, transportation, tracking and consumer electronics.
Combating Bad Weather Part II jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


- Acknowledgments
- Introduction
- Analysis of Fog
- Dataset and Performance Metrics
- Important Fog Removal Algorithms
- Single-Image Fog Removal Using an Anisotropic Diffusion
- Video Fog Removal Framework Using an Uncalibrated Single Camera System
- Conclusions and Future Directions
- Bibliography
- Authors' Biographies


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.