Cremers / Boykov / Blake | Energy Minimization Methods in Computer Vision and Pattern Recognition | E-Book | sack.de
E-Book

E-Book, Englisch, Band 5681, 494 Seiten, eBook

Reihe: Lecture Notes in Computer Science

Cremers / Boykov / Blake Energy Minimization Methods in Computer Vision and Pattern Recognition

7th International Conference, EMMCVPR 2009, Bonn, Germany, August 24-27, 2009, Proceedings
2009
ISBN: 978-3-642-03641-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

7th International Conference, EMMCVPR 2009, Bonn, Germany, August 24-27, 2009, Proceedings

E-Book, Englisch, Band 5681, 494 Seiten, eBook

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-642-03641-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Cremers / Boykov / Blake Energy Minimization Methods in Computer Vision and Pattern Recognition jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Discrete Optimization and Markov Random Fields.- Multi-label Moves for MRFs with Truncated Convex Priors.- Detection and Segmentation of Independently Moving Objects from Dense Scene Flow.- Efficient Global Minimization for the Multiphase Chan-Vese Model of Image Segmentation.- Bipartite Graph Matching Computation on GPU.- Pose-Invariant Face Matching Using MRF Energy Minimization Framework.- Parallel Hidden Hierarchical Fields for Multi-scale Reconstruction.- General Search Algorithms for Energy Minimization Problems.- Partial Differential Equations.- Complex Diffusion on Scalar and Vector Valued Image Graphs.- A PDE Approach to Coupled Super-Resolution with Non-parametric Motion.- On a Decomposition Model for Optical Flow.- A Schrödinger Wave Equation Approach to the Eikonal Equation: Application to Image Analysis.- Computing the Local Continuity Order of Optical Flow Using Fractional Variational Method.- A Local Normal-Based Region Term for Active Contours.- Segmentation and Tracking.- Hierarchical Pairwise Segmentation Using Dominant Sets and Anisotropic Diffusion Kernels.- Tracking as Segmentation of Spatial-Temporal Volumes by Anisotropic Weighted TV.- Complementary Optic Flow.- Parameter Estimation for Marked Point Processes. Application to Object Extraction from Remote Sensing Images.- Three Dimensional Monocular Human Motion Analysis in End-Effector Space.- Robust Segmentation by Cutting across a Stack of Gamma Transformed Images.- Shape Optimization and Registration.- Integrating the Normal Field of a Surface in the Presence of Discontinuities.- Intrinsic Second-Order Geometric Optimization for Robust Point Set Registration without Correspondence.- Geodesics in Shape Space via Variational Time Discretization.- Image Registration under Varying Illumination:Hyper-Demons Algorithm.- Hierarchical Vibrations: A Structural Decomposition Approach for Image Analysis.- Inpainting and Image Denoising.- Exemplar-Based Interpolation of Sparsely Sampled Images.- A Variational Framework for Non-local Image Inpainting.- Image Filtering Driven by Level Curves.- Color Image Restoration Using Nonlocal Mumford-Shah Regularizers.- Reconstructing Optical Flow Fields by Motion Inpainting.- Color and Texture.- Color Image Segmentation in a Quaternion Framework.- Quaternion-Based Color Image Smoothing Using a Spatially Varying Kernel.- Locally Parallel Textures Modeling with Adapted Hilbert Spaces.- Global Optimal Multiple Object Detection Using the Fusion of Shape and Color Information.- Statistics and Learning.- Human Age Estimation by Metric Learning for Regression Problems.- Clustering-Based Construction of Hidden Markov Models for Generative Kernels.- Boundaries as Contours of Optimal Appearance and Area of Support.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.