Das / Abraham / Konar | Metaheuristic Clustering | Buch | 978-3-540-92172-1 | sack.de

Buch, Englisch, Band 178, 252 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1230 g

Reihe: Studies in Computational Intelligence

Das / Abraham / Konar

Metaheuristic Clustering


1. Auflage 2009
ISBN: 978-3-540-92172-1
Verlag: Springer

Buch, Englisch, Band 178, 252 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1230 g

Reihe: Studies in Computational Intelligence

ISBN: 978-3-540-92172-1
Verlag: Springer


Cluster analysis means the organization of an unlabeled collection of objects or patterns into separate groups based on their similarity. The task of computerized data clustering has been approached from diverse domains of knowledge like graph theory, multivariate analysis, neural networks, fuzzy set theory, and so on. Clustering is often described as an unsupervised learning method but most of the traditional algorithms require a prior specification of the number of clusters in the data for guiding the partitioning process, thus making it not completely unsupervised. Modern data mining tools that predict future trends and behaviors for allowing businesses to make proactive and knowledge-driven decisions, demand fast and fully automatic clustering of very large datasets with minimal or no user intervention.

In this volume, we formulate clustering as an optimization problem, where the best partitioning of a given dataset is achieved by minimizing/maximizing one (single-objective clustering) or more (multi-objective clustering) objective functions. Using several real world applications, we illustrate the performance of several metaheuristics, particularly the Differential Evolution algorithm when applied to both single and multi-objective clustering problems, where the number of clusters is not known beforehand and must be determined on the run. This volume comprises of 7 chapters including an introductory chapter giving the fundamental definitions and the last Chapter provides some important research challenges.

Academics, scientists as well as engineers engaged in research, development and application of optimization techniques and data mining will find the comprehensive coverage of this book invaluable.

Das / Abraham / Konar Metaheuristic Clustering jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Metaheuristic Pattern Clustering – An Overview.- Differential Evolution Algorithm: Foundations and Perspectives.- Modeling and Analysis of the Population-Dynamics of Differential Evolution Algorithm.- Automatic Hard Clustering Using Improved Differential Evolution Algorithm.- Fuzzy Clustering in the Kernel-Induced Feature Space Using Differential Evolution Algorithm.- Clustering Using Multi-objective Differential Evolution Algorithms.- Conclusions and Future Research.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.