Dhar / Goswami / Mazumdar | Analytics, Machine Learning, and Artificial Intelligence | Buch | 978-3-031-75156-1 | sack.de

Buch, Englisch, Band 2224, 267 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 429 g

Reihe: Communications in Computer and Information Science

Dhar / Goswami / Mazumdar

Analytics, Machine Learning, and Artificial Intelligence

Second Analytics Global Conference, AGC 2024, Kolkata, India, March 6-7, 2024, Revised Selected Papers
2024
ISBN: 978-3-031-75156-1
Verlag: Springer Nature Switzerland

Second Analytics Global Conference, AGC 2024, Kolkata, India, March 6-7, 2024, Revised Selected Papers

Buch, Englisch, Band 2224, 267 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 429 g

Reihe: Communications in Computer and Information Science

ISBN: 978-3-031-75156-1
Verlag: Springer Nature Switzerland


This book constitutes the refereed proceedings of the Second Analytics Global Conference on Analytics, Machine Learning, and Artificial Intelligence, AGC 2024, held in Kolkata, India, during March 6-7, 2024.

The 15 full papers and 3 short papers presented in these proceedings were carefully reviewed and selected from 60 submissions. The papers are organized in these topical sections: applications of analytics in business; analytics methods, tools & techniques.

Dhar / Goswami / Mazumdar Analytics, Machine Learning, and Artificial Intelligence jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Applications of Analytics in Business.

.- Next-Gen Cold Storage Surveillance Platform.

.- Attack Hypergraph: A Framework for Modeling Multi-Stage Attacks.

.- Ensuring Integrity in Blockchain-Based Health Information Exchange through Collaborative Data Safeguards.

.- Predictive Modelling of Airline Baggage Complaints Using Facebook Prophet: A Time Series Analysis.

.- Path Planning in Disaster Management Scenarios.

.- Analytics Methods, Tools & Techniques.

.- Machine Learning-Driven Feature Selection for Performance Analysis in Student Mental Health.

.- Utilizing Social Media for Understanding Public Opinion on Transportation in Indian Cities.

.- Classification of Various Iris Patterns of Amphibians using Geometric and Color Features.

.- Recognition of the Hornbill Eye’s Iris using Bit Plane Processing, Un-Sharp Masking and High Boost Filtering.

.- Analyzing Post-Shopping Facial Expressions Unraveling Emotions for Enhanced Consumer Insights.

.- AI Based Energy Resources Management for PV/Wind/Diesel/Battery Hybrid System.

.- Unraveling the Complexity of Anti-Vax Concerns during the COVID-19 Pandemic.

.- Recommending influential authors using content-based filtering and network similarity-a case study on disease-related research.

.- An Examination of the Effectiveness of SMOTE-based Algorithms on Software Defect Prediction.

.- Development of An Essential Education Performance Prediction Tool Using Machine Learning.

.- Groundwater Quality Assessment of Indian Pumping Stations using Unsupervised Machine Learning and Cluster Analysis.

.- Predicting Performance of Players in the Knockouts of Cricket World Cup Based on Their Performance in League Matches Using Machine Learning.

.- Lung-UNet: A modified UNet-based DNN for COVID Lung Segmentation from Chest X-Ray and CT-Scan Images.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.