E-Book, Englisch, 444 Seiten
Duarte Quantum Optics for Engineers
1. Auflage 2017
ISBN: 978-1-4398-8854-4
Verlag: CRC Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 444 Seiten
ISBN: 978-1-4398-8854-4
Verlag: CRC Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Quantum Optics for Engineers provides a transparent and methodical introduction to quantum optics via the Dirac's bra–ket notation with an emphasis on practical applications and basic aspects of quantum mechanics such as Heisenberg's uncertainty principle and Schrodinger's equation.
Self-contained and using mainly first-year calculus and algebra tools, the book:
- Illustrates the interferometric quantum origin of fundamental optical principles such as diffraction, refraction, and reflection
- Provides a transparent introduction, via Dirac's notation, to the probability amplitude of quantum entanglement
- Explains applications of the probability amplitude of quantum entanglement to optical communications, quantum cryptography, quantum teleportation, and quantum computing.
Quantum Optics for Engineers is succinct, transparent, and practical, revealing the intriguing world of quantum entanglement via many practical examples. Ample illustrations are used throughout its presentation and the theory is presented in a methodical, detailed approach.
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Technische Optik, Lasertechnologie
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Lasertechnologie, Holographie
- Naturwissenschaften Physik Quantenphysik
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
Weitere Infos & Material
Introduction
Introduction
Brief Historical Perspective
Principles of Quantum Mechanics
The Feynman Lectures on Physics
Photon
Quantum Optics
Quantum Optics for Engineers
Planck’s Quantum Energy Equation
Introduction
Planck’s Equation and Wave Optics
Uncertainty Principle
Heisenberg Uncertainty Principle
Wave–Particle Duality
Feynman Approximation
Interferometric Approximation
Minimum Uncertainty Principle
Generalized Uncertainty Principle
Additional Versions of the Heisenberg Uncertainty Principle
Applications of the Uncertainty Principle in Optics
Dirac Quantum Optics
Dirac Notation in Optics
Dirac Quantum Principles
Interference and the Interferometric Equation
Coherent and Semicoherent Interferograms
Interferometric Equation in Two and Three Dimensions
Classical and Quantum Alternatives
Interference, Diffraction, Refraction, and Reflection via the Dirac Notation
Introduction
Interference and Diffraction
Positive and Negative Refraction
Reflection
Succinct Description of Optics
Generalized Multiple-Prism Dispersion
Introduction
Generalized Multiple-Prism Dispersion
Double-Pass Generalized Multiple-Prism Dispersion
Multiple-Return-Pass Generalized Multiple-Prism Dispersion
Multiple-Prism Dispersion and Laser Pulse Compression
Dirac Notation Identities
Useful Identities
Linear Operations
Laser Excitation
Introduction
Brief Laser Overview
Laser Excitation
Excitation and Emission Dynamics
Quantum Transition Probabilities and Cross Sections
Laser Oscillators Described via the Dirac Notation
Introduction
Transverse and Longitudinal Modes
Laser Cavity Equation: An Intuitive Approach
Laser Cavity Equation via the Interferometric Equation
Interferometry via the Dirac Notation
Interference à la Dirac
Hanbury Brown–Twiss Interferometer
Two-Beam Interferometers
Multiple-Beam Interferometers
N-Slit Interferometer as a Wavelength Meter
Ramsey Interferometer
Secure Interferometric Communications in Free Space
Introduction
Theory
N-Slit Interferometer for Secure Free-Space Optical Communications
Interferometric Characters
Propagation in Terrestrial Free Space
Discussion
Schrödinger’s Equation
Introduction
Schrödinger’s Mind
Heuristic Explicit Approach to Schrödinger’s Equation
Schrödinger’s Equation via the Dirac Notation
Time-Independent Schrödinger’s Equation
Introduction to the Hydrogen Equation
Introduction to Feynman Path Integrals
Introduction
Classical Action
Quantum Link
Propagation through a Slit and the Uncertainty Principle
Feynman Diagrams in Optics
Matrix Aspects of Quantum Mechanics
Introduction
Introduction to Vector and Matrix Algebra
Quantum Operators
Pauli Matrices
Introduction to the Density Matrix
Classical Polarization
Introduction
Maxwell Equations
Polarization and Reflection
Jones Calculus
Polarizing Prisms
Polarization Rotators
Quantum Polarization
Introduction
Linear Polarization
Polarization as a Two-State System
Density Matrix Notation
Entangled Polarizations: Probability Amplitudes and Experimental Configurations
Introduction
Hamiltonian Approach
Interferometric Approach
Pryce–Ward–Snyder Probability Amplitude of Entanglement
Pryce–Ward–Snyder Probability
Pryce–Ward Experimental Arrangement
Wu–Shaknov Experiment
Conclusion
Quantum Computing
Introduction
Interferometric Computer
Classical Logic Gates
Qubits
Quantum Logic
Quantum Cryptography and Teleportation
Introduction
Quantum Cryptography
Quantum Teleportation
Quantum Measurements
Introduction
Interferometric Irreversible Measurements
Quantum Nondemolition Measurements
Soft Polarization Measurements
Soft Intersection of Interferometric Characters
Interpretational Issues in Quantum Mechanics
Introduction
EPR
Bohm Polarization Projection of the EPR Argument
Bell’s Inequalities
Some Prominent Quantum Physicists on Issues of Interpretation
Eisenberg’s Uncertainty Principle and EPR
van Kampen’s Quantum Theorems
On Probabilities and Probability Amplitudes
Comment on the Interpretational Issue
Appendix A: Survey of Laser Emission Characteristics
Appendix B: Brief Survey of Laser Resonators and Laser Cavities
Appendix C: Ray Transfer Matrices
Appendix D: Multiple-Prism Dispersion Series
Appendix E: Complex Numbers
Appendix F: Trigonometric Identities
Appendix G: Calculus Basics
Appendix H: Poincaré’s Space
Appendix I: N-Slit Interferometric Calculations
Appendix J: N-Slit Interferometric Calculations—Numerical Approach
Appendix K: Physical Constants and Optical Quantities