Buch, Englisch, 348 Seiten, Format (B × H): 243 mm x 160 mm, Gewicht: 726 g
Buch, Englisch, 348 Seiten, Format (B × H): 243 mm x 160 mm, Gewicht: 726 g
Reihe: Chapman & Hall/CRC Data Science Series
ISBN: 978-0-367-86287-9
Verlag: Taylor & Francis Ltd
Data Science for Sensory and Consumer Scientists is a comprehensive textbook that provides a practical guide to using data science in the field of sensory and consumer science through real-world applications. It covers key topics including data manipulation, preparation, visualization, and analysis, as well as automated reporting, machine learning, text analysis, and dashboard creation. Written by leading experts in the field, this book is an essential resource for anyone looking to master the tools and techniques of data science and apply them to the study of consumer behavior and sensory-led product development. Whether you are a seasoned professional or a student just starting out, this book is the ideal guide to using data science to drive insights and inform decision-making in the sensory and consumer sciences.
Key Features:
• Elucidation of data scientific workflow.
• Introduction to reproducible research.
• In-depth coverage of data-scientific topics germane to sensory and consumer science.
• Examples based in industrial practice used throughout the book
Zielgruppe
Professional Practice & Development
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftsstatistik, Demographie
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Lebensmitteltechnologie und Getränketechnologie
- Mathematik | Informatik Mathematik Stochastik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
Weitere Infos & Material
1. Bienvenue! 2. Getting Started 3. Why Data Science? 4. Data Manipulation 5. Data Visualization 6. Automated Reporting 7. Example Project: The Biscuit Study 8. Data Collection 9. Data Preparation 10. Data Analysis 11. Value Delivery 12. Machine Learning 13. Text Analysis 14. Dashboards 15. Conclusion and Next Steps