Grassberger / Nadal | From Statistical Physics to Statistical Inference and Back | E-Book | sack.de
E-Book

E-Book, Englisch, Band 428, 355 Seiten, eBook

Reihe: NATO Science Series C

Grassberger / Nadal From Statistical Physics to Statistical Inference and Back


1994
ISBN: 978-94-011-1068-6
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 428, 355 Seiten, eBook

Reihe: NATO Science Series C

ISBN: 978-94-011-1068-6
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark



Physicists, when modelling physical systems with a large number of degrees of freedom, and statisticians, when performing data analysis, have developed their own concepts and methods for making the `best' inference. But are these methods equivalent, or not? What is the state of the art in making inferences? The physicists want answers. More: neural computation demands a clearer understanding of how neural systems make inferences; the theory of chaotic nonlinear systems as applied to time series analysis could profit from the experience already booked by the statisticians; and finally, there is a long-standing conjecture that some of the puzzles of quantum mechanics are due to our incomplete understanding of how we make inferences. Matter enough to stimulate the writing of such a book as the present one.

But other considerations also arise, such as the maximum entropy method and Bayesian inference, information theory and the minimum description length. Finally, it is pointed out that an understanding of human inference may require input from psychologists. This lively debate, which is of acute current interest, is well summarized in the present work.

Grassberger / Nadal From Statistical Physics to Statistical Inference and Back jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Some remarks on.- Statistical mechanics and the maximum entropy method.- Irreversibility, probability and entropy.- Maximum entropy for random cellular structures.- Minimal Description Length modeling: an introduction.- An introduction to learning and generalization.- Information geometry and manifolds- of neural networks.- Uncertainty as a resource for managing complexity.- The development of Information Theory.- Statistical inference, zero-knowledge and proofs of identity.- Spin glasses: an introduction.- Statistical Mechanics and error-correcting codes.- Learning and generalization with undetermined architecture.- Confronting neural network and human behavior in a quasiregular environment.- Sensory processing and information theory.- The formation of representations in the visual cortex.- Classifier systems: models for learning agents.- Space time dynamics and biorthogonal analysis: mementum.- Symbolic encoding in dynamical systems.- Topological organization of (low-dimensional) chaos.- Noise Separation and MDL modeling of chaotic processes.- Inference in Quantum Mechanics.- Decoherence and the existential interpretation of quantum theory or “no information without representation”.- List of Contributors.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.