• Neu
He / Chen | Machine Translation | E-Book | sack.de
E-Book

E-Book, Englisch, Band 2365, 176 Seiten, eBook

Reihe: Communications in Computer and Information Science

He / Chen Machine Translation

20th China Conference, CCMT 2024, Xiamen, China, November 8–10, 2024, Proceedings
Erscheinungsjahr 2025
ISBN: 978-981-962292-4
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

20th China Conference, CCMT 2024, Xiamen, China, November 8–10, 2024, Proceedings

E-Book, Englisch, Band 2365, 176 Seiten, eBook

Reihe: Communications in Computer and Information Science

ISBN: 978-981-962292-4
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book constitutes the refereed proceedings of the 20th China Conference on Machine Translation, CCMT 2024, which took place in Xiamen, China, during November 8–10, 2024.The 13 full papers included in this book were carefully reviewed and selected from 52 submissions. They were organized in topical sections as follows: robustness and efficiency of translation models; low-resource machine translation; quality estimation; large language modes for machine translation; multi-modal translation; and machine translation evaluation.
He / Chen Machine Translation jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


.- Robustness and Efficiency of Translation Models.
.- A Data-Efficient Nearest-Neighbor Language Model via Lightweight Nets.
.- Extend Adversarial Policy Against Neural Machine Translation via Unknown Token..- Low-resource Machine Translation.
.- Evaluating the Translation Performance of Multilingual Large Language Models: a Case Study on Southeast Asian Language..- Quality Estimation.
.- Critical Error Detection based on Anchors Test..- Large Language Modes for Machine Translation.
.- Enhancing Machine Translation Across Multiple Domains and Languages with Large Language Models.
.- Incorporating Terminology Knowledge into Large Language Model for Domain-specific Machine Translation..- Multi-modal Translation.
.- Joint Multi-modal Modeling for Speech-to-Text Translation as Multilingual Neural Machine Translation..- Machine Translation Evaluation.
.- CCMT2024 Tibetan-Chinese Machine Translation Evaluation Technical Report.
.- HW-TSC’s Submission to the CCMT 2024 Machine Translation Task.
.- ISTIC’s Neural Machine Translation Systems for CCMT’ 2024.
.- Lan-Bridge’s Submission to CCMT 2024 Translation Evaluation Task.
.- Technical Report of OPPO’s Machine Translation Systems for CCMT 2024.
.- Xihong’s Submission to CCMT 2024: Human-in-the-Loop Data Augmentation for Low-Resource Tibetan-Chinese NMT.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.