E-Book, Englisch, 611 Seiten, eBook
Reihe: ATZ/MTZ-Fachbuch
Heißing / Ersoy Chassis Handbook
2011
ISBN: 978-3-8348-9789-3
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark
Fundamentals, Driving Dynamics, Components, Mechatronics, Perspectives
E-Book, Englisch, 611 Seiten, eBook
Reihe: ATZ/MTZ-Fachbuch
ISBN: 978-3-8348-9789-3
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark
In spite of all the assistance offered by electronic control systems, the latest generation of passenger car chassis still relies on conventional chassis elements. With a view towards driving dynamics, this book examines these conventional elements and their interaction with mechatronic systems. First, it describes the fundamentals and design of the chassis and goes on to examine driving dynamics with a particularly practical focus. This is followed by a detailed description and explanation of the modern components. A separate section is devoted to the axles and processes for axle development.
With its revised illustrations and several updates in the text and list of references, this new edition already includes a number of improvements over the first edition.
Univ.-Prof. Dr.-Ing. Bernd Heißing is director of the Chair for Automotive Engineering at the Technical University of Munich. For almost 15 years, he held a managerial post in chassis development at Audi and is still additionally involved in numerous research projects and participates in congresses on chassis issues.
Prof. Dr.-Ing. Metin Ersoy completed his doctorate in Design Systematics at the Technical University of Braunschweig and spent more than 30 years at a managerial level at various companies, including 20 years at ZF Lemförder, where his most recent post was Head of Predevelopment. He is also an honorary professor for chassis technology at the University of Applied Sciences in Osnabrück.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;5
2;Contributors;6
3;Contents;8
4;1 Introduction and Fundamentals;23
4.1;1.1 History, Definition, Function, and Significance;24
4.1.1;1.1.1 History;24
4.1.2;1.1.2 Definition and Scope;29
4.1.3;1.1.3 Purpose and Significance;30
4.2;1.2 Chassis Design;31
4.2.1;1.2.1 Vehicle Classification;31
4.2.2;1.2.2 Powertrain Configurations;32
4.2.3;1.2.3 Chassis Composition;35
4.2.4;1.2.4 Trends in Chassis Composition;35
4.3;1.3 Chassis Layout;37
4.3.1;1.3.1 Chassis Requirements;38
4.3.2;1.3.2 Layout of Suspension Kinematics;40
4.3.3;1.3.3 Suspension Kinematics;40
4.3.3.1;1.3.3.1 Suspension Parameters Relative to Vehicle;40
4.3.3.2;1.3.3.2 Roll and Pitch Center;42
4.3.3.3;1.3.3.3 Wheel Travel;42
4.3.3.4;1.3.3.4 Wheel Travel Parameters;43
4.3.3.5;1.3.3.5 Steering Kinematic Parameters;46
4.3.3.6;1.3.3.6 Kinematic Parameters of Current Vehicles;50
4.3.3.7;1.3.3.7 Wheel Travel Curves;50
4.3.3.8;1.3.3.8 Wheel Kinematic Calculation Software;53
4.3.4;1.3.4 Elastokinematics and Component Compliances in Suspension Design;53
4.3.5;1.3.5 Target Parameter Values;54
4.3.6;1.3.6 Suspension Composition;55
5;2 Driving Dynamics;57
5.1;2.1 Driving Resistances and Energy Requirements;57
5.1.1;2.1.1 Driving Resistances;57
5.1.1.1;2.1.1.1 Rolling Resistance;57
5.1.1.2;2.1.1.2 Effect of Road Surface on Rolling Resistance FR,Tr;62
5.1.1.3;2.1.1.3 Aerodynamic Drag FA;65
5.1.1.4;2.1.1.4 Climbing Resistance FC;66
5.1.1.5;2.1.1.5 Inertial Resistance FI;67
5.1.1.6;2.1.1.6 Total Driving Resistance;68
5.1.2;2.1.2 Crosswind Response Behavior;68
5.1.3;2.1.3 Performance and Energy Requirements;71
5.1.4;2.1.4 Fuel Consumption;72
5.2;2.2 Tire Traction and Force Transfer to the Roadway;74
5.2.1;2.2.1 The Physics of Tire Traction and Force Transfer;76
5.2.1.1;2.2.1.1 Acceleration and Braking;79
5.2.1.2;2.2.1.2 Cornering;80
5.2.2;2.2.2 Detailed Tire Forces;85
5.3;2.3 Longitudinal Dynamics;87
5.3.1;2.3.1 Acceleration and Braking;87
5.3.1.1;2.3.1.1 Anti-Dive;87
5.3.1.2;2.3.1.2 Anti-Lift (Anti-Squat);88
5.3.1.3;2.3.1.3 Load Changes During Straightline Driving;89
5.4;2.4 Vertical Dynamics;89
5.4.1;2.4.1 Springs;89
5.4.1.1;2.4.1.1 Spring Ratio;90
5.4.1.2;2.4.1.2 Natural (Eigen) Frequencies;90
5.4.2;2.4.2 Vibration Dampers;91
5.4.3;2.4.3 Excitations from the Roadway;92
5.4.3.1;2.4.3.1 Harmonic Excitations;92
5.4.3.2;2.4.3.2 Periodic Irregularities;93
5.4.3.3;2.4.3.3 Stochastic (Random) Irregularities;93
5.4.3.4;2.4.3.4 Spectral Density of Road Surface Irregularities;94
5.4.3.5;2.4.3.5 Measured Road Surface Irregularities;95
5.4.4;2.4.4 Tires as Spring/Damper Elements;95
5.4.5;2.4.5 Suspension Models;96
5.4.5.1;2.4.5.1 Single-Mass System;96
5.4.5.2;2.4.5.2 Dual-Mass System;97
5.4.5.3;2.4.5.3 Expansion of the Model to Include Seat Suspension Effects;97
5.4.5.4;2.4.5.4 Single-Track Suspension Model;98
5.4.5.5;2.4.5.5 Two-Track Suspension Model;99
5.4.6;2.4.6 Parameter Variation;101
5.4.7;2.4.7 The Roadway/Vehicle Connection;103
5.4.7.1;2.4.7.1 Spectral Density of Vehicle Body Accelerations;104
5.4.7.2;2.4.7.2 Spectral Density of Dynamic Wheel Loads;106
5.4.8;2.4.8 Human Oscillation Evaluation;106
5.4.9;2.4.9 Conclusions from the Fundamentalsof Vertical Dynamics;108
5.5;2.5 Lateral Dynamics;108
5.5.1;2.5.1 Handling Requirements;108
5.5.2;2.5.2 Steering Kinematics;109
5.5.2.1;2.5.2.1 Static Steering Layout;109
5.5.2.2;2.5.2.2 Dynamic Steering Layout;110
5.5.3;2.5.3 Vehicle Modeling;111
5.5.3.1;2.5.3.1 Simple Single-Track (Bicycle) Model;111
5.5.3.2;2.5.3.2 Simple Vehicle Dynamics;112
5.5.3.3;2.5.3.3 Understeer and Oversteer;115
5.5.3.4;2.5.3.4 Expanded Single-Track Model with Rear-Wheel Steering;116
5.5.3.5;2.5.3.5 Nonlinear Single-Track Model;117
5.5.3.6;2.5.3.6 Analysis of Transient Behavior Using the Simple Single-Track Model;119
5.5.3.7;2.5.3.7 The Vehicle as Part of a Closed-Loop System;121
5.5.3.8;2.5.3.8 Dynamic Behavior of the Vehicle as Part of a Closed-Loop System;122
5.5.3.9;2.5.3.9 Slip Angle Compensation Using Rear-Wheel Steering;125
5.5.3.10;2.5.3.10 Investigation of Frequency Response for Varied Vehicle Configurations;127
5.5.3.11;2.5.3.11 Dual-Track Model;128
5.5.3.12;2.5.3.12 Parameter Variation;131
5.6;2.6 General Vehicle Dynamics;135
5.6.1;2.6.1 Interactions between Vertical, Longitudinal, and Lateral Dynamics;135
5.7;2.7 Chassis Control Systems;140
5.7.1;2.7.1 Definition of Terms;140
5.7.2;2.7.2 Limitations of the Passive Vehicle – Basic Goal Conflicts;140
5.7.3;2.7.3 The Driver-Vehicle Control Loop;141
5.7.4;2.7.4 Division of Chassis Control Systems into Domains;142
5.7.4.1;2.7.4.1 Longitudinal Dynamics;142
5.7.4.2;2.7.4.2 Lateral Dynamics;143
5.7.4.3;2.7.4.3 Vertical Dynamics;143
5.7.5;2.7.5 Requirements for Chassis Control Systems;143
5.8;2.8 Handling Characteristics;144
5.8.1;2.8.1 Handling Evaluation;144
5.8.2;2.8.2 Driving Maneuvers;146
5.8.3;2.8.3 Parameter Range of Maneuvers;146
5.8.4;2.8.4 Tuning Procedures;149
5.8.4.1;2.8.4.1 Tuning Procedures forSteady-State Steering Behavior;149
5.8.5;2.8.5 Subjective Handling Evaluation;149
5.8.5.1;2.8.5.1 Evaluation Methods and Representation;152
5.8.5.2;2.8.5.2 Acceleration (Driveoff) Behavior;152
5.8.5.3;2.8.5.3 Braking Behavior;152
5.8.5.4;2.8.5.4 Steering Behavior;154
5.8.5.5;2.8.5.5 Cornering Behavior;156
5.8.5.6;2.8.5.6 Straightline Driving Behavior;156
5.8.5.7;2.8.5.7 Ride Comfort;158
5.8.6;2.8.6 Objective Handling Evaluations;159
5.8.6.1;2.8.6.1 Measurement Parameters;159
5.8.6.2;2.8.6.2 Acceleration (Driveoff) Behavior;159
5.8.6.3;2.8.6.3 Braking Behavior;160
5.8.6.4;2.8.6.4 Steering Behavior;161
5.8.6.5;2.8.6.5 Cornering Behavior;163
5.8.6.6;2.8.6.6 Straightline Driving Behavior;165
5.8.6.7;2.8.6.7 Ride Comfort;167
5.9;2.9 Active and Passive Safety;167
6;3 Chassis Components;170
6.1;3.1 Chassis Structuring;170
6.1.1;3.1.1 Classification by Function;170
6.1.2;3.1.2 Modular Chassis Structure;171
6.1.3;3.1.3 Chassis Components;171
6.2;3.2 Drivetrain;172
6.2.1;3.2.1 Configurations;172
6.2.2;3.2.2 Axle Drives;172
6.2.2.1;3.2.2.1 Differentials;172
6.2.2.2;3.2.2.2 Locking Differentials;172
6.2.2.3;3.2.2.3 Active Differentials;174
6.2.2.4;3.2.2.4 Torque Vectoring;174
6.2.3;3.2.3 Four-wheel-drive (All-wheel-drive);175
6.2.4;3.2.4 Control Strategies;176
6.2.5;3.2.5 Half-shafts;177
6.3;3.3 Wheel Brakes and Braking;178
6.3.1;3.3.1 Fundamentals and Requirements;178
6.3.2;3.3.2 Types of Braking Systems;179
6.3.2.1;3.3.2.1 General Requirements;180
6.3.3;3.3.3 Legal Regulations;181
6.3.4;3.3.4 Brake System Design;181
6.3.4.1;3.3.4.1 Brake Force Distribution;181
6.3.4.2;3.3.4.2 Dimensioning;183
6.3.5;3.3.5 Braking Torque and Dynamics;183
6.3.5.1;3.3.5.1 Braking Torque;183
6.3.5.2;3.3.5.2 Braking Dynamics;184
6.3.6;3.3.6 Brake System Components;185
6.3.6.1;3.3.6.1 Brake Calipers;185
6.3.6.2;3.3.6.2 Brake Discs;189
6.3.6.3;3.3.6.3 Brake Linings;190
6.3.6.4;3.3.6.4 Drum Brakes;190
6.3.6.5;3.3.6.5 Brake Fluid;193
6.3.6.6;3.3.6.6 Brake Force Booster;193
6.3.6.7;3.3.6.7 Tandem Master Cylinder;194
6.3.6.8;3.3.6.8 Human-Machine Interface (HMI);194
6.3.7;3.3.7 Electronic Braking Control Systems;198
6.3.7.1;3.3.7.1 Brake Assistant (MBA, EBA, HBA);198
6.3.7.2;3.3.7.2 Wheel Speed Sensors;201
6.3.7.3;3.3.7.3 Electronic Braking System Functions;202
6.3.7.4;3.3.7.4 Electrohydraulic Brake (EHB);208
6.3.7.5;3.3.7.5 Electromechanical Brake (EMB);209
6.3.7.6;3.3.7.6 Networked Chassis;211
6.4;3.4 Steering Systems;212
6.4.1;3.4.1 Requirements and Designs;212
6.4.2;3.4.2 Hydraulic Rack and Pinion Steering;215
6.4.2.1;3.4.2.1 Technology and Function;215
6.4.2.2;3.4.2.2 Design and Components;218
6.4.3;3.4.3 Steering Tie Rods;221
6.4.4;3.4.4 Steering Driveline and Steering Column;224
6.4.4.1;3.4.4.1 Components and Function Modules;224
6.4.4.2;3.4.4.2 Design and Testing;226
6.4.4.3;3.4.4.3 Crash Requirements and Energy Absorption Mechanisms;227
6.4.4.4;3.4.4.4 Future Prospects and Modularization;230
6.4.5;3.4.5 Electromechanical Steering Systems;230
6.4.5.1;3.4.5.1 Design Concepts;230
6.4.5.2;3.4.5.2 Configuration and Advantages;233
6.4.6;3.4.6 Active Steering and Superposition Steering;236
6.4.6.1;3.4.6.1 Functional Principles and Configuration;236
6.4.6.2;3.4.6.2 Functions – Present and Future;238
6.4.7;3.4.7 Rack and Pinion Power Steering with Torque and Angle Actuators;240
6.4.8;3.4.8 Rear-wheel and Four-wheel Steering Systems;241
6.4.9;3.4.9 Steer-by-wire and Single-wheel Steering Systems;243
6.4.9.1;3.4.9.1 System Configuration and Components;244
6.4.9.2;3.4.9.2 Technology, Advantages, Opportunities;246
6.5;3.5 Springs and Stabilizers;247
6.5.1;3.5.1 The Purpose of the Spring System;247
6.5.2;3.5.2 Design and Calculation of Steel Springs;247
6.5.2.1;3.5.2.1 Leaf Springs;248
6.5.2.2;3.5.2.2 Torsion Bar Springs;251
6.5.2.3;3.5.2.3 Stabilizers;252
6.5.2.4;3.5.2.4 Coil Springs;260
6.5.3;3.5.3 Spring Materials;268
6.5.4;3.5.4 Steel Spring Manufacture;270
6.5.4.1;3.5.4.1 Hot Forming;270
6.5.4.2;3.5.4.2 Heat Treating Hot Formed Springs;272
6.5.4.3;3.5.4.3 Cold Forming;272
6.5.4.4;3.5.4.4 Shot Peening;273
6.5.4.5;3.5.4.5 Plastification;274
6.5.4.6;3.5.4.6 Corrosion Protection;274
6.5.4.7;3.5.4.7 Final Inspection and Marking;275
6.5.5;3.5.5 Roll Control Using Stabilizers;275
6.5.5.1;3.5.5.1 Passive Stabilizers;275
6.5.5.2;3.5.5.2 Switchable Off-Road Stabilizers;276
6.5.5.3;3.5.5.3 Switchable On-Road Stabilizers;276
6.5.5.4;3.5.5.4 Semi-Active Stabilizers;276
6.5.5.5;3.5.5.5 Active Stabilizers;278
6.5.6;3.5.6 Springs for use with AutomaticLeveling Systems;278
6.5.6.1;3.5.6.1 Purpose and Configurations;278
6.5.6.2;3.5.6.2 Leveling Using a Gas Spring;279
6.5.7;3.5.7 Hydropneumatic Springs;282
6.5.7.1;3.5.7.1 Self-Pumping Hydropneumatic Spring/Damper Elements;282
6.5.8;3.5.8 Air Springs;285
6.6;3.6 Damping;287
6.6.1;3.6.1 The Purpose of Damping;287
6.6.2;3.6.2 Telescopic Shock Absorber Designs;291
6.6.2.1;3.6.2.1 Twin-Tube Shock Absorbers;291
6.6.2.2;3.6.2.2 Monotube Shock Absorbers;292
6.6.2.3;3.6.2.3 Comparison of Damper Types;292
6.6.2.4;3.6.2.4 Special Designs;293
6.6.3;3.6.3 Coilover Shock Absorber and Strut;293
6.6.4;3.6.4 Shock Absorber Calculations;295
6.6.5;3.6.5 Additional Damper Features;296
6.6.5.1;3.6.5.1 Rebound and Compression Bump Stops;296
6.6.5.2;3.6.5.2 Stroke-Dependent Damping;298
6.6.5.3;3.6.5.3 Amplitude-Selective Damping;300
6.6.6;3.6.6 Damper End Mounts;301
6.6.7;3.6.7 Semi-Active Damping and Spring Functions;302
6.6.8;3.6.8 Alternative Damping Concepts;306
6.6.8.1;3.6.8.1 Magneto-Rheological (MRF) Dampers;306
6.6.8.2;3.6.8.2 Conjoined Damping;307
6.6.8.3;3.6.8.3 Load-Dependent Damping (PDC);307
6.7;3.7 Wheel Control;308
6.7.1;3.7.1 Purpose, Requirements, and System Structure;308
6.7.2;3.7.2 Suspension Links: Purpose, Requirements, and System Structure;309
6.7.2.1;3.7.2.1 Control Arms (Control Links);310
6.7.2.2;3.7.2.2 Support Links;311
6.7.2.3;3.7.2.3 Auxiliary Links;311
6.7.2.4;3.7.2.4 Suspension Link Requirements;312
6.7.2.5;3.7.2.5 Suspension Link Materials;312
6.7.2.6;3.7.2.6 Suspension Link Manufacturing Processes;313
6.7.2.7;3.7.2.7 Manufacturing Methods for Aluminum Suspension Links;319
6.7.2.8;3.7.2.8 Configuration and Optimization of Suspension Links;321
6.7.2.9;3.7.2.9 Integration of the Joints into the Link;321
6.7.3;3.7.3 Ball Joints;322
6.7.3.1;3.7.3.1 Purpose and Requirements;323
6.7.3.2;3.7.3.2 Types of Ball Joints;323
6.7.3.3;3.7.3.3 Ball Joint Components;324
6.7.3.4;3.7.3.4 Bearing System (Ball Race, Grease);327
6.7.3.5;3.7.3.5 Sealing System (Sealing Boot, Retaining Ring);330
6.7.3.6;3.7.3.6 Suspension Ball Joints;333
6.7.3.7;3.7.3.7 Preloaded Ball Joints;334
6.7.3.8;3.7.3.8 Cross Axis Ball Joints;335
6.7.4;3.7.4 Rubber Bushings;337
6.7.4.1;3.7.4.1 Purpose, Requirements, and Function;337
6.7.4.2;3.7.4.2 Types of Rubber Bushings;339
6.7.5;3.7.5 Pivot Joints;341
6.7.6;3.7.6 Rotational Sliding Joints (Trunnion Joints);342
6.7.7;3.7.7 Chassis Subframes;343
6.7.7.1;3.7.7.1 Purpose and Requirements;343
6.7.7.2;3.7.7.2 Types and Designs;343
6.8;3.8 Wheel Carriers and Bearings;346
6.8.1;3.8.1 Types of Wheel Carriers;346
6.8.2;3.8.2 Wheel Carrier Materials and Manufacturing Methods;348
6.8.3;3.8.3 Types of Wheel Bearings;349
6.8.3.1;3.8.3.1 Bearing Seals;352
6.8.3.2;3.8.3.2 Lubrication;352
6.8.3.3;3.8.3.3 ABS Sensors;353
6.8.4;3.8.4 Wheel Bearing Manufacturing;355
6.8.4.1;3.8.4.1 Rings and Flanges;355
6.8.4.2;3.8.4.2 Cages and Rolling Elements;356
6.8.4.3;3.8.4.3 Assembly;356
6.8.5;3.8.5 Requirements, Design, and Testing;356
6.8.5.1;3.8.5.1 Bearing Rotational Fatigue Strength;358
6.8.5.2;3.8.5.2 Component Strength and Tilt Stiffness;360
6.8.5.3;3.8.5.3 Verification by Testing;362
6.8.6;3.8.6 Future Prospects;363
6.9;3.9 Tires and Wheels;367
6.9.1;3.9.1 Tire Requirements;367
6.9.1.1;3.9.1.1 Properties and Performance;367
6.9.1.2;3.9.1.2 Legal Requirements;369
6.9.2;3.9.2 Types, Construction, and Materials;370
6.9.2.1;3.9.2.1 Tire Types;370
6.9.2.2;3.9.2.2 Tire Construction;371
6.9.2.3;3.9.2.3 Tire Materials;371
6.9.2.4;3.9.2.4 The Viscoelastic Properties of Rubber;372
6.9.3;3.9.3 Transmission of Forces between the Tire and the Road Surface;373
6.9.3.1;3.9.3.1 Supporting Force;373
6.9.3.2;3.9.3.2 Adhesion Behavior and Lateral Force Buildup;374
6.9.3.3;3.9.3.3 Tangential Forces: Driving and Braking;375
6.9.3.4;3.9.3.4 Sideslip, Lateral Forces, and Aligning Moments;375
6.9.3.5;3.9.3.5 Sideslip Stiffness;376
6.9.3.6;3.9.3.6 Tire Behavior under Slip;378
6.9.3.7;3.9.3.7 Tire Uniformity;379
6.9.4;3.9.4 Tire Simulation Models;379
6.9.4.1;3.9.4.1 Tire Models for Lateral Dynamics;379
6.9.4.2;3.9.4.2 Tire Models Using Finite Elements (FEM);381
6.9.4.3;3.9.4.3 Tire Models for Vertical Dynamics;381
6.9.4.4;3.9.4.4 Tire Vibration Modes;382
6.9.4.5;3.9.4.5 Cavity Natural Frequencies;382
6.9.4.6;3.9.4.6 Full Tire Models;383
6.9.5;3.9.5 Modern Tire Technologies;385
6.9.5.1;3.9.5.1 Tire Sensors;385
6.9.5.2;3.9.5.2 Run-Flat Tires;387
6.9.5.3;3.9.5.3 Tires and Control Systems;388
6.9.5.4;3.9.5.4 High Performance (HP) and Ultra High Performance (UHP) Tires;389
6.9.6;3.9.6 Vehicle Testing and Measurement;390
6.9.6.1;3.9.6.1 Subjective Test Procedures;390
6.9.6.2;3.9.6.2 Objective Test Procedures for Longitudinal Adhesion;391
6.9.6.3;3.9.6.3 Objective Test Procedures for Lateral Adhesion;392
6.9.6.4;3.9.6.4 Acoustics;393
6.9.7;3.9.7 Laboratory Testing and Measurement Methods;393
6.9.7.1;3.9.7.1 Basic Tire Test Rig Designs;393
6.9.7.2;3.9.7.2 Strength Tests;394
6.9.7.3;3.9.7.3 Measuring Tire Characteristics Using a Test Rig;394
6.9.7.4;3.9.7.4 Measuring Tire Characteristics Using a Vehicle-Mounted Test Rig;394
6.9.7.5;3.9.7.5 Measuring Tire Rolling Resistance;395
6.9.7.6;3.9.7.6 Measuring Uniformity and Geometry;395
6.9.7.7;3.9.7.7 Roadway Measurement and Modeling;397
6.9.7.8;3.9.7.8 Power Loss Analysis;397
6.9.7.9;3.9.7.9 Tire Temperature Measurement;398
6.9.8;3.9.8 The Future of Tire Technology;399
6.9.8.1;3.9.8.1 Material Developments;399
6.9.8.2;3.9.8.2 Energy Saving Tires;399
7;4 Axles and Suspensions;403
7.1;4.1 Rigid Axles;405
7.1.1;4.1.1 The De Dion Driven Rigid Axle;407
7.1.2;4.1.2 Rigid Axles with Longitudinal Leaf Springs;407
7.1.3;4.1.3 Rigid Axles with Longitudinal and Lateral Links;408
7.1.4;4.1.4 Rigid Parabolic Axles with a Central Joint and Lateral Control Links;409
7.2;4.2 Semi-Rigid Axles;409
7.2.1;4.2.1 Twist Beam Axles;410
7.2.1.1;4.2.1.1 Torsion-Type Twist Beam Axles;411
7.2.1.2;4.2.1.2 Standard Twist Beam Axles;411
7.2.1.3;4.2.1.3 Coupling-Type Twist Beam Axles;412
7.2.2;4.2.2 The Dynamic Twist Beam Axle;412
7.3;4.3 Independent Suspension;413
7.3.1;4.3.1 Independent Suspension Kinematics;413
7.3.2;4.3.2 The Advantages of Independent Suspension;415
7.3.3;4.3.3 Single-Link Independent Suspension Systems;415
7.3.3.1;4.3.3.1 Trailing Link Independent Suspension;416
7.3.3.2;4.3.3.2 Semi-Trailing Link Independent Suspension;417
7.3.3.3;4.3.3.3 Screw-Link Independent Suspension;418
7.3.4;4.3.4 Two-Link Independent Suspension;418
7.3.4.1;4.3.4.1 Lateral-Longitudinal Swing Axles;418
7.3.4.2;4.3.4.2 Trapezoidal Link with One Lateral Link (Audi 100 Quattro);419
7.3.4.3;4.3.4.3 Trapezoidal Link with One Flexible Lateral Link (Porsche Weissach Axle);419
7.3.5;4.3.5 Three-Link Independent Suspension;419
7.3.5.1;4.3.5.1 Central Link Independent Suspension;419
7.3.5.2;4.3.5.2 Double Wishbone Independent Suspension;420
7.3.6;4.3.6 Four-Link Independent Suspension;422
7.3.6.1;4.3.6.1 Rear Axle Multi-Link Independent Suspension;422
7.3.6.2;4.3.6.2 Multi-Link Suspension with Two Lower Two-Point Links;423
7.3.6.3;4.3.6.3 Trapezoidal (Integral) Link Suspension;423
7.3.6.4;4.3.6.4 Two Longitudinal and Two Lateral Links;424
7.3.6.5;4.3.6.5 One Longitudinal and Three Lateral Links;424
7.3.6.6;4.3.6.6 One Diagonal and Three Lateral Links;425
7.3.7;4.3.7 Five-Link Independent Suspension;426
7.3.7.1;4.3.7.1 Five-Link Front Suspension (SLA with two Decomposed 3-Point Links);426
7.3.7.2;4.3.7.2 Five-Link Rear Suspension;426
7.3.8;4.3.8 Strut-Type Suspension Systems;427
7.4;4.4 Front Axle Suspension;430
7.4.1;4.4.1 Front Axle Suspension System Requirements;430
7.4.2;4.4.2 Front Axle Components;432
7.4.3;4.4.3 Front Axle Suspension Types;432
7.4.3.1;4.4.3.1 McPherson with Upper Strut Brace;432
7.4.3.2;4.4.3.2 McPherson withOptimized Lower Control Arm;432
7.4.3.3;4.4.3.3 McPherson withDecomposed Lower Control Arm;432
7.4.3.4;4.4.3.4 McPherson with Two-Piece Wheel Carrier;433
7.4.3.5;4.4.3.5 Double Wishbone with Decomposed Control Arms;433
7.5;4.5 Rear Axle Suspension;434
7.5.1;4.5.1 Rear Axle Suspension Requirements;434
7.5.2;4.5.2 Rear Axle Components;434
7.5.3;4.5.3 Rear Axle Suspension Types;434
7.5.3.1;4.5.3.1 Non-Driven Rear Axles;434
7.5.3.2;4.5.3.2 Driven Rear Axles;434
7.5.4;4.5.4 ULSAS Rear Axle Benchmark;435
7.6;4.6 Design Catalog for Axle Type Selection;436
7.7;4.7 The Chassis as a Complete System;436
7.7.1;4.7.1 Front / Rear Axle Interaction;436
7.8;4.8 Future Suspension Systems;438
7.8.1;4.8.1 Axles of the Past 20 Years;438
7.8.2;4.8.2 Relative Popularity of Various Current Axle Designs;438
7.8.3;4.8.3 Future Axle Designs (Trends);438
8;5 Ride Comfort and NVH;441
8.1;5.1 Fundamentals: NVH and the Human Body;441
8.1.1;5.1.1 Concepts and Definitions;441
8.1.2;5.1.2 Sources of Vibrations, Oscillations, and Noise;442
8.1.3;5.1.3 Limits of Human Perception;443
8.1.4;5.1.4 Human Comfort and Well-Being;444
8.1.5;5.1.5 Mitigation of Oscillation and Noise;445
8.2;5.2 Bonded Rubber Components;446
8.2.1;5.2.1 Bonded Rubber Component Functions;446
8.2.1.1;5.2.1.1 Transferring Forces;446
8.2.1.2;5.2.1.2 Enabling Defined Movements;446
8.2.1.3;5.2.1.3 Noise Isolation;447
8.2.1.4;5.2.1.4 Vibration Damping;448
8.2.2;5.2.2 The Specific Definition of Elastomeric Components;449
8.2.2.1;5.2.2.1 Force-Displacement Curves;449
8.2.2.2;5.2.2.2 Damping;449
8.2.2.3;5.2.2.3 Setting;450
8.3;5.3 Engine and Transmission Mounts;451
8.4;5.4 Chassis and Suspension Mounts and Bushings;455
8.4.1;5.4.1 Rubber Bushings;455
8.4.2;5.4.2 Sliding Bushings;456
8.4.3;5.4.3 Hydraulically-Damped Bushings (Hydro Bushings);457
8.4.4;5.4.4 Chassis Subframe Mounts;460
8.4.5;5.4.5 Upper Strut Bearings and Damper Mounts;461
8.4.6;5.4.6 Twist Beam Axle Mounts;463
8.5;5.5 Future Component Designs;464
8.5.1;5.5.1 Sensors;465
8.5.2;5.5.2 Switchable Chassis Mounts;465
8.6;5.6 Computation Methods;466
8.7;5.7 Acoustic Evaluation ofBonded Rubber Components;467
9;6 Chassis Development;469
9.1;6.1 The Development Process;469
9.2;6.2 Project Management (PM);475
9.3;6.3 The Planning and Definition Phase;475
9.3.1;6.3.1 Target Cascading;476
9.4;6.4 The Concept Phase;477
9.5;6.5 Computer-Aided Engineering;477
9.5.1;6.5.1 Multi-Body Simulation (MBS);478
9.5.1.1;6.5.1.1 MBS Chassis and Suspension Models in ADAMS/Car;478
9.5.1.2;6.5.1.2 CAD Chassis Models and Multi-Body Systems;478
9.5.1.3;6.5.1.3 Multi-Body Simulation with Rigid and Flexible MBS;479
9.5.1.4;6.5.1.4 Multi-Body Simulations Using Whole-Vehicle, Chassis, and Axle Models;480
9.5.1.5;6.5.1.5 Effects of Manufacturing Tolerances on Kinematic Parameters;481
9.5.2;6.5.2 Finite Element Method (FEM);482
9.5.2.1;6.5.2.1 Classification of Analyses;482
9.5.2.2;6.5.2.2 Strength Analyses;483
9.5.2.3;6.5.2.3 Stiffness Analyses;483
9.5.2.4;6.5.2.4 Natural Frequency Analyses;483
9.5.2.5;6.5.2.5 Service Life and Durability Analyses;484
9.5.2.6;6.5.2.6 Crash Simulations;484
9.5.2.7;6.5.2.7 Topology and Shape Optimization;484
9.5.2.8;6.5.2.8 Simulations of Manufacturing Processes;486
9.5.3;6.5.3 Whole-Vehicle Simulations;486
9.5.3.1;6.5.3.1 Vehicle Handling and Dynamic Simulations;486
9.5.3.2;6.5.3.2 Kinematics and Elastokinematics;486
9.5.3.3;6.5.3.3 Standard Load Cases;487
9.5.3.4;6.5.3.4 MBS Model Verification;488
9.5.3.5;6.5.3.5 NVH;488
9.5.3.6;6.5.3.6 Loads Management (Load Cascading from Systems to Components);490
9.5.3.7;6.5.3.7 Whole-Vehicle Durability Simulations;494
9.5.3.8;6.5.3.8 Whole-Vehicle Handling Fingerprint;494
9.5.3.9;6.5.3.9 Specification of Elastokinematics Using Control-System Methods;495
9.5.4;6.5.4 3D Modeling Software (CAD);496
9.5.5;6.5.5 Integrated Simulation Environment;497
9.5.5.1;6.5.5.1 Kinematic Analysis Using ABE Software;497
9.5.5.2;6.5.5.2 The Virtual Product Development Environment (VPE);500
9.6;6.6 Series Development and Validation;502
9.6.1;6.6.1 Design;502
9.6.1.1;6.6.1.1 Component Design;503
9.6.1.2;6.6.1.2 Package Volume;504
9.6.1.3;6.6.1.3 Failure Mode and Effects Analysis (FMEA);505
9.6.1.4;6.6.1.4 Tolerance Investigations;505
9.6.2;6.6.2 Validation;505
9.6.2.1;6.6.2.1 Prototypes;505
9.6.2.2;6.6.2.2 Validation Using Test Rigs;505
9.6.2.3;6.6.2.3 Roadway Simulation Test Rig;508
9.6.3;6.6.3 Whole-Vehicle Validation;509
9.6.4;6.6.4 Optimization and Fine-Tuning;510
9.7;6.7 Development ActivitiesDuring Series Production;510
9.8;6.8 Summary and Future Prospects;511
10;7 Chassis Control Systems;513
10.1;7.1 Chassis Electronics;513
10.2;7.2 Electronic Chassis ControlSystems;513
10.2.1;7.2.1 Domains;513
10.2.2;7.2.2 Longitudinal Dynamic Control Systems – Wheel Slip Regulation;514
10.2.2.1;7.2.2.1 Braking Control;514
10.2.2.2;7.2.2.2 Electronically-Controlled Center Differentials;514
10.2.2.3;7.2.2.3 Torque-On-Demand Transfer Cases;514
10.2.2.4;7.2.2.4 Electronically-ControlledAxle Differentials;515
10.2.2.5;7.2.2.5 Axle Drive for Lateral Torque Distribution;516
10.2.3;7.2.3 Lateral Dynamic Control Systems;517
10.2.3.1;7.2.3.1 Electric Power Steering Systems (EPS);517
10.2.3.2;7.2.3.2 Superimposed Steering;518
10.2.3.3;7.2.3.3 Active Rear-Wheel Steering;518
10.2.3.4;7.2.3.4 Active Rear-Axle Kinematics;519
10.2.4;7.2.4 Vertical Dynamic Control Systems;519
10.2.4.1;7.2.4.1 Variable Dampers;519
10.2.4.2;7.2.4.2 Active Stabilizers;521
10.2.4.3;7.2.4.3 Active Leveling Systems;521
10.2.5;7.2.5 Safety Requirements;522
10.2.6;7.2.6 Bus Systems;523
10.2.6.1;7.2.6.1 CAN;523
10.2.6.2;7.2.6.2 FlexRay;523
10.3;7.3 System Networking;523
10.3.1;7.3.1 Vehicle Dynamic Control (VDC);523
10.3.2;7.3.2 Torque Vectoring;525
10.3.3;7.3.3 Vertical Dynamic Management;526
10.4;7.4 Functional Integration;526
10.4.1;7.4.1 System Architecture;526
10.4.2;7.4.2 Standard Interfaces;527
10.4.3;7.4.3 Smart Actuators;528
10.5;7.5 Chassis Control System;528
10.5.1;7.5.1 Simulation Models;529
10.5.2;7.5.2 Hardware-in-the-Loop Simulation;530
10.6;7.6 Mechatronic Chassis Systems;531
10.6.1;7.6.1 Longitudinal Dynamics;531
10.6.1.1;7.6.1.1 Powertrain Systems;532
10.6.1.2;7.6.1.2 Braking Systems;534
10.6.2;7.6.2 Lateral Dynamics;536
10.6.2.1;7.6.2.1 Front-Wheel Steering Systems;536
10.6.2.2;7.6.2.2 Rear-Wheel Steering Systems;537
10.6.2.3;7.6.2.3 Roll Stabilization Systems;540
10.6.2.4;7.6.2.4 Active Kinematics;543
10.6.3;7.6.3 Vertical Dynamics;546
10.6.3.1;7.6.3.1 System Requirements;546
10.6.3.2;7.6.3.2 Classification of Vertical Dynamic Systems;546
10.6.3.3;7.6.3.3 Damping Systems;547
10.6.3.4;7.6.3.4 Active Leveling Systems;551
10.6.3.5;7.6.3.5 Current Active Spring Systems;552
10.6.3.6;7.6.3.6 Fully Active Integrated Suspension Systems;555
10.6.3.7;7.6.3.7 Pivots (Bushings, Joints, Mounts);557
10.7;7.7 X-by-wire;559
10.7.1;7.7.1 Steer-by-wire;559
10.7.2;7.7.2 Brake-by-wire;560
10.7.2.1;7.7.2.1 Electrohydraulic Braking (EHB);561
10.7.2.2;7.7.2.2 Electromechanical Braking(EMB) Systems;561
10.7.2.3;7.7.2.3 The ContiTeves Electromechanical Brake;562
10.7.2.4;7.7.2.4 Radial (Full-Contact) Disc Brakes;562
10.7.2.5;7.7.2.5 Wedge Brake;564
10.7.3;7.7.3 Leveling-by-wire;565
10.8;7.8 Driver Assistance Systems;565
10.8.1;7.8.1 Braking Assistance Systems;565
10.8.1.1;7.8.1.1 Safety-Relevant Braking Assistance;566
10.8.1.2;7.8.1.2 Comfort-Oriented Braking Assistance;567
10.8.1.3;7.8.1.3 Braking Assistance System Requirements;567
10.8.2;7.8.2 Distance Assistance Systems;568
10.8.3;7.8.3 Steering Assistance Systems;569
10.8.3.1;7.8.3.1 Steering Assistance Using Adaptive Assistance Torques;569
10.8.3.2;7.8.3.2 Steering Assistance Using Additional Steering Torque;569
10.8.3.3;7.8.3.3 Steering Assistance Using a Supplemental Steer Angle;570
10.8.3.4;7.8.3.4 Summary;571
10.8.4;7.8.4 Parking Assistance Systems;571
10.8.4.1;7.8.4.1 Introduction;571
10.8.4.2;7.8.4.2 Parking Space Recognition;571
10.8.4.3;7.8.4.3 Parallel Parking;573
10.8.4.4;7.8.4.4 Steering Actuators;574
11;8 The Future of Chassis Technology;577
11.1;8.1 Chassis System Concepts – Focus on Customer Value;577
11.1.1;8.1.1 Choosing Handling Behavior;577
11.1.2;8.1.2 Diversification of Vehicle Concepts – Stabilization of Chassis Concepts;579
11.1.2.1;8.1.2.1 Front Suspension as of 2004;579
11.1.2.2;8.1.2.2 Rear Suspension as of 2004;580
11.1.3;8.1.3 The Future of Chassis Subsystems and Components;580
11.1.3.1;8.1.3.1 The Future of Axle Drive Units;580
11.1.3.2;8.1.3.2 The Future of Braking Systems;581
11.1.3.3;8.1.3.3 The Future of Steering Systems;581
11.1.3.4;8.1.3.4 The Future of Suspension Spring Systems;581
11.1.3.5;8.1.3.5 The Future of Dampers;581
11.1.3.6;8.1.3.6 The Future of Wheel Control Components;581
11.1.3.7;8.1.3.7 The Future of Wheel Bearings;581
11.1.3.8;8.1.3.8 The Future of Tires and Wheels;581
11.2;8.2 Electronic Chassis Systems;581
11.2.1;8.2.1 Electronic Assistance Systems and Networking;581
11.2.2;8.2.2 Networking Chassis Control Systems;582
11.2.2.1;8.2.2.1 Peaceful Coexistence;582
11.2.2.2;8.2.2.2 Integral Control;583
11.2.2.3;8.2.2.3 Networked Control;583
11.2.2.4;8.2.2.4 Performance / Efficiency;584
11.2.2.5;8.2.2.5 System Safety;584
11.2.2.6;8.2.2.6 The Development Process;584
11.2.2.7;8.2.2.7 Data Transmission Requirements;585
11.2.2.8;8.2.2.8 Summary;585
11.3;8.3 The Future of X-by-Wire Systems;585
11.4;8.4 Intelligent and Predictive Future Chassis Systems;586
11.4.1;8.4.1 Sensors;587
11.4.2;8.4.2 Actuators;587
11.4.3;8.4.3 Predictive Driving;588
11.5;8.5 Hybrid Vehicles;590
11.6;8.6 The Rolling/Driving Chassis;591
11.7;8.7 The Vision of Autonomous Vehicle Control;592
11.8;8.8 Future Scenarios for Vehicle and Chassis Technology;593
11.9;8.9 Outlook;596
12;Index;599