Hens | Applied Building Physics | Buch | 978-3-433-03423-1 | sack.de

Buch, Englisch, 346 Seiten, Format (B × H): 169 mm x 242 mm, Gewicht: 674 g

Hens

Applied Building Physics

Ambient Conditions, Functional Demands, and Building Part Requirements
3. überarbeitete Auflage 2023
ISBN: 978-3-433-03423-1
Verlag: Ernst W. + Sohn Verlag

Ambient Conditions, Functional Demands, and Building Part Requirements

Buch, Englisch, 346 Seiten, Format (B × H): 169 mm x 242 mm, Gewicht: 674 g

ISBN: 978-3-433-03423-1
Verlag: Ernst W. + Sohn Verlag


Während ein erstes Buch über Bauphysik die physikalischen Grundlagen des Wärme-, Luft- und Feuchteverhaltens von Gebäuden, Baukonstruktionen und Bauteilen behandelt, richtet dieses zweite Buch über Angewandte Bauphysik den Fokus auf die Frage, worin eine ausgewogene Gebäude-Performance besteht. Zunächst werden die Umwelteinwirkungen auf Gebäude erläutert - also all jene Parameter, die die äußeren und inneren Umgebungsbedingungen beschreiben, wobei der Schwerpunkt auf der praktischen Umsetzung liegt. Anschließend folgt die Erörterung jener Leistungsanforderungen, die auf der Ebene des gesamten Gebäudes von Bedeutung sind, wobei hauptsächlich der thermische, akustische, visuelle und olfaktorische Komfort, die Innenraumluftqualität, der Energieverbrauch, die Dauerhaftigkeit, die Wirtschaftlichkeit und die Nachhaltigkeit betrachtet werden. Es folgt eine eingehende Diskussion der Anforderungen bzgl. Wärme-, Luft- und Feuchte-Verhalten sowie der Messgrößen auf der Ebene der Baukonstruktionen.
Die in diesem Buch beschriebenen Analysen und Berechnungen führen zu nachhaltigen Gebäuden, die aus funktionalen und dauerhaften Baukonstruktionen bestehen und ein angenehmes und gesundes Raumklima aufweisen.
Der gesamte Text, einschließlich der Abbildungen, wurde überarbeitet und wo nötig neu formuliert. In Kapitel 3 wurden die Ausführungen über den Komfort nicht nur auf den thermischen, sondern auch auf den akustischen, visuellen und olfaktorischen Komfort ausgedehnt. Auch der Teil zur Luftqualität in Innenräumen ist erweitert, ebenso wie der Teil zur Nachhaltigkeit. In Kapitel 4 wurde ein Beispiel aus der Praxis hinzugefügt. Das letzte Kapitel über Materialeigenschaften wurde in das Buch zur Bauphysik verschoben und durch einen Anhang zum schnellen Nachschlagen ersetzt, der lediglich Richtwerte enthält, für die Listen mit Standardwerten fehlen.

Hens Applied Building Physics jetzt bestellen!

Weitere Infos & Material


Vorwort
Einheiten und Symbole
Einleitung, Historischer Rückblick
1 Umgebungsbedingungen in Außen- und Innenräumen
1.1 Überblick
1.2 Außenklima
1.3 Innenraumklima
Literatur
2 Performance-Kennzahlen und -Spektrum
2.1 Definitionen
2.2 Funktionale Anforderungen
2.3 Leistungsanforderungen
2.4 Eine kurze Geschichte
2.5 Performance-Spektrum
Literatur
3 Funktionale Anforderungen auf der Ebene des gesamten Gebäudes
3.1 In Kürze
3.2 Thermischer, akustischer, visueller und olfaktorischer Komfort
3.3 Gesundheit und Umweltqualität in Innenräumen (IEQ)
3.4 Energieeffizienz
3.5 Dauerhaftigkeit
3.6 Wirtschaftlichkeit
3.7 Nachhaltigkeit
3.8 High-Performance-Gebäude
Literatur
4 Wärme-, Luft- und Feuchtekenngrößen von Baukonstruktionen
4.1 Einführung
4.2 Luftdichtheit
4.3 Wärmedurchgangskoeffizient
4.4 Thermisches Verhalten
4.5 Feuchtetoleranz
4.6 Wärmebrücken
4.7 Kontaktkoeffizient
4.8 Hygrothermische Beanspruchungen
4.9 Transparente Teile: Sonneneinstrahlung
Literatur
5 Die hygrothermische Performance der Gebäudehülle im Holzrahmenbau
5.1 Allgemeines
5.2 Baukonstruktion
5.3 Beurteilung der Performance
Literatur
Anhang: Materialeigenschaften ausgewählter Baustoffe
Stichwortverzeichnis

Preface xv

About the Author xvii

List of Units and Symbols Introduction 1

Subject of the Book 1

Further Reading 2

1 Ambient Conditions Out- and Indoors 3

1.1 Overview 3

1.2 Outdoors 5

1.2.1 In General 5

1.2.2 Air Temperature 6

1.2.3 Solar Radiation 9

1.2.3.1 In General 9

1.2.3.2 Beam Radiation 11

1.2.3.3 Diffuse Radiation 13

1.2.3.4 Reflected Radiation 15

1.2.3.5 Total Radiation 15

1.2.4 Clear Sky Long Wave Radiation 15

1.2.5 Relative Humidity (RH) and (Partial Water) Vapour Pressure 18

1.2.6 Wind 20

1.2.6.1 Impact 20

1.2.6.2 Wind Speed 21

1.2.6.3 Wind Pressure 22

1.2.7 Rain 23

1.2.7.1 Impact 23

1.2.7.2 Precipitation 23

1.2.7.3 Wind-driven Rain 25

1.2.8 Microclimate Around Buildings 28

1.2.9 Standardized Outside Climate Data 28

1.2.9.1 Design Temperature 28

1.2.9.2 Very Hot Summer, Very Cold Winter Day 30


1.2.9.3 Moisture Reference Year 30

1.2.9.4 Equivalent Temperature for Condensation and Drying 32

1.2.9.5 Monthly Mean Vapour Pressure Outdoors 35

1.3 Indoors 35

1.3.1 In General 35

1.3.2 Air Temperature 35

1.3.2.1 In General 35

1.3.2.2 Measured Data 36

1.3.3 Relative Humidity (RH) and Vapour Pressure 37

1.3.3.1 In General 37

1.3.3.2 Vapour Release Indoors 38

1.3.3.3 Measured Data 38

1.3.3.4 Indoor Climate Classes 45

1.3.4 Indoor to Outdoor Air Pressure Differentials 47

Annex: Solar Radiation at Uccle, Belgium (50 ° 51 ' N, 4 ° 21 ' E) 48

Further Reading 59

2 Performance Metrics and Arrays 63

2.1 Definitions 63

2.2 Functional Demands 63

2.3 Performance Requirements 64

2.4 A Short History 64

2.5 Performance Arrays 66

2.5.1 Overview 66

2.5.1.1 The Built Environment 66

2.5.1.2 Whole Buildings and Building Assemblies 66

2.5.2 Some Demands More in Detail 70

2.5.2.1 Functionality 70

2.5.2.2 Structural Adequacy 70

2.5.2.3 Building Physics-Related Requirements 71

2.5.2.4 Fire Safety 71

2.5.2.5 Durability 72

2.5.2.6 Sustainability 73

2.5.2.7 Maintenance 73

Further Reading 73

3 Performance Demands at the Whole Building Level 75

3.1 In Brief 75

3.2 Thermal, Acoustical, Visual and Olfactory Comfort 75

3.2.1 In General 75

3.2.2 Thermal Comfort 76

3.2.2.1 Physiological Basis 76

3.2.2.2 The Autonomous Control System 77

3.2.2.3 Steady State Thermal Comfort, A Physiological Approach 78

3.2.2.4 Comfort Parameters and Variables 81

3.2.2.5 Steady State Thermal Comfort, the Adaptive Model 85

3.2.2.6 Thermal Comfort Under Non-uniform, Non-steady-state Conditions 86

3.2.2.7 Local Discomfort 87

3.2.2.8 Standard-based Comfort Requirements 89

3.2.2.9 Consequences for the Enclosure Performance 92

3.2.3 Acoustical Comfort 93

3.2.3.1 Anatomy of the Ears 93

3.2.3.2 Physiological Facts 94

3.2.3.3 Effects of Unacceptable Noise 94

3.2.3.4 Comfort Values 97

3.2.4 Visual Comfort 99

3.2.4.1 Anatomy of the Eyes 99

3.2.4.2 Physiological Facts 99

3.2.4.3 Comfort Values 100

3.2.5 Olfactory Comfort 102

3.2.5.1 Anatomy of the Nose 102

3.2.5.2 Physiological Facts 102

3.2.5.3 Comfort Values 102

3.3 Health and Indoor Environmental Quality (IEQ) 103

3.3.1 In General 103

3.3.2 Health 104

3.3.3 Definitions 104

3.3.4 Relation Between Pollution Out- and Indoors 105

3.3.5 Process-related Contaminants, Some Coming from Outdoors 105

3.3.5.1 Dust, Vapours, Smoke, Mist and Gaseous Clouds 105

3.3.5.2 Fibres 106

3.3.5.3 Ozone 107

3.3.6 Contaminants Emitted by Materials and Other Sources 107

3.3.6.1 (Semi) Volatile Organic Compounds ((S)VOCs) 107

3.3.6.2 Formaldehyde (HCHO) 108

3.3.6.3 Phthalates 108

3.3.6.4 Pentachlorophenol 109

3.3.7 Soil Linked Radon 109

3.3.8 Combustion Linked Contaminants 110

3.3.8.1 In General 110

3.3.8.2 Carbon Monoxide (CO) 111

3.3.8.3 Nitrous Dioxide (NO 2) 111


3.3.9 Bio-germs 111

3.3.9.1 Viruses 111

3.3.9.2 Bacteria 111

3.3.9.3 Moulds 112

3.3.9.4 Dust Mites 114

3.3.9.5 Insects 115

3.3.9.6 Rodents 115

3.3.9.7 Pets 115

3.3.10 Human Related Contaminants 115

3.3.10.1 In General 115

3.3.10.2 Carbon Dioxide (CO 2) 116

3.3.10.3 Water Vapour 116

3.3.10.4 Bio-odours 116

3.3.10.5 Tobacco Smoke 116

3.3.11 Perceived Indoor Air Quality 118

3.3.11.1 Odour 118

3.3.11.2 Indoor Air Enthalpy 119

3.3.12 Sick Building Syndrome 120

3.3.13 Contaminant Control 121

3.3.13.1 In General 121

3.3.13.2 Minimizing the Emissions 121

3.3.13.3 Ventilation 121

3.3.13.4 Air Cleaning and Personal Protective Measures 130

3.4 Energy Efficiency 131

3.4.1 The Problem 131

3.4.2 Some Statistics 132

3.4.3 End Energy Use in Buildings 132

3.4.3.1 In General 132

3.4.3.2 Lighting and Appliances 133

3.4.3.3 Domestic Hot Water 135

3.4.3.4 Space Heating, Cooling and Air Conditioning 136

3.4.4 Space Heating, Steady-state 136

3.4.4.1 Terminology 136

3.4.4.2 Steady State Heat Balance at Zone Level 138

3.4.4.3 Whole Building Net Heating Balance 143

3.4.4.4 Annual End Energy Use for Heating 144

3.4.4.5 Protected Volume Seen as One Zone at Given Temperature 145

3.4.5 Simple Methods to Guess the Annual End Energy Use for Heating 145

3.4.5.1 When Predesigning Single-family Houses 145

3.4.5.2 Using Degree-days 145

3.4.6 Space Conditioning and Overheating, Non-steady-state Evaluation 146

3.4.6.2 Methodologies 146

3.4.6.3 Harmonic Analysis in Detail 148

3.4.6.4 Lines of Influence in Detail 154

3.4.6.5 Control Volumes in Detail (CVM) 156

3.4.7 Residential Buildings, Factors Shaping the Net Heating Demand 157

3.4.7.1 Overview 157

3.4.7.2 Outdoor Climate 157

3.4.7.3 Building Use 158

3.4.7.4 Building Design and Construction 166

3.4.8 Residential Buildings, Factors Fixing the Net Cooling Demand 175

3.4.9 Residential Buildings, Gross Energy Demand and End Use for Heating and Cooling 175

3.4.10 Residential Buildings Ranked in Terms of Energy Efficiency 177

3.4.10.1 Insulated 177

3.4.10.2 Energy Efficient 177

3.4.10.3 Low Energy 177

3.4.10.4 Passive 177

3.4.10.5 Nearly Net Zero (nZEB) 177

3.4.10.6 Net Zero (ZEB) 178

3.4.10.7 Net Plus 178

3.4.10.8 Energy Autarkic 178

3.4.10.9 Zero Carbon 178

3.4.11 Non-residential Buildings, From Net Demand to Primary Energy Use 179

3.4.11.1 In General 179

3.4.11.2 School Renovation as Exemplary Case 179

3.5 Durability 182

3.5.1 In General 182

3.5.2 Loads 183

3.5.3 Damage Patterns 184

3.5.3.1 Decrease in Thermal Insulation Performance 184

3.5.3.2 Decrease in Strength and Stiffness 185

3.5.3.3 Stress, Strain, Deformation and Cracking Induced 185

3.5.3.4 Biological Attack 188

3.5.3.5 Frost 190

3.5.3.6 Salt Attack 194

3.5.3.7 Chemical Attack 198

3.5.3.8 Corrosion 199

3.6 Economics 201

3.6.1 In General 201

3.6.2 Total and Net Present Value 201

3.6.3 Optimal Insulation Thickness 202

3.6.4 Whole Building Optimum 203

3.6.4.1 Methodology 203

3.6.4.2 Application 204

3.7 Sustainability 210

3.7.1 In General 210

3.7.2 Life Cycle Inventory and Analysis (LCIA) 211

3.7.2.1 Definition 211

3.7.2.2 Some Criteria 212

3.7.2.3 Total Energy Use 215

3.7.2.4 Recycling 216

3.8 High-performance Buildings 216

3.8.1 In General 216

3.8.2 Rationale Developed for Governmental Office Building 217

Further Reading 220

4 Heat, Air, Moisture (HAM) Metrics at the Building Assembly Level 229

4.1 Introduction 229

4.2 Airtightness 229

4.2.1 Airflow Patterns 229

4.2.2 Performance Requirements 231

4.2.2.1 Air In- and Exfiltration 231

4.2.2.2 Indoor Air Washing, Wind Washing and Air Looping 232

4.3 Thermal Transmittance 233

4.3.1 Definitions 233

4.3.1.1 Opaque Envelope Assemblies Above Grade 233

4.3.1.2 Floors on Grade as Three Dimensional Case 233

4.3.1.3 Other Three Dimensional Cases 235

4.3.1.4 Transparent Parts 235

4.3.1.5 Whole Envelopes 237

4.3.2 Basis for Requirements 238

4.3.2.1 Envelope Parts 238

4.3.2.2 Whole Envelopes 238

4.3.3 Examples of Requirements 238

4.3.3.1 Remark 238

4.3.3.2 Envelope Parts 238

4.3.3.3 Whole Envelopes 238

4.4 Transient Thermal Response 242

4.4.1 Properties of Importance 242

4.4.2 Performance Requirements 243

4.4.3 Consequences for the Building Fabric 244

4.5 Moisture Tolerance 245

4.5.1 In General 245

4.5.2 Construction Moisture 245

4.5.2.1 Definition 245

4.5.2.2 Performance Requirements 246

4.5.2.3 Consequences for the Building Fabric 246

4.5.3 Rain 248

4.5.3.1 In General 248

4.5.3.2 Performance Requirements 250

4.5.3.3 Modelling 250

4.5.3.4 Consequences for the Building Envelope 252

4.5.4 Rising Damp 256

4.5.4.1 Definition 256

4.5.4.2 Performance Requirements 256

4.5.4.3 Modelling 257

4.5.4.4 Avoiding or Curing Rising Damp 259

4.5.5 Pressure Heads 261

4.5.5.1 Definition 261

4.5.5.2 Performance Requirements 261

4.5.5.3 Modelling 262

4.5.5.4 Protecting the Building Fabric 262

4.5.6 Accidental Leakages 263

4.5.7 Hygroscopicity 263

4.5.7.1 Definition 263

4.5.7.2 Performance Requirements 264

4.5.7.3 Modelling 264

4.5.7.4 Consequences for the Building Fabric 265

4.5.8 Surface Condensation 265

4.5.8.1 Definition 265

4.5.8.2 Performance Requirements 265

4.5.8.3 Modelling 265

4.5.8.4 How to Avoid? 267

4.5.9 Interstitial Condensation 267

4.5.9.1 Definition 267

4.5.9.2 Modelling 267

4.5.9.3 Performance Requirements 275

4.5.9.4 How to avoid? 276

4.5.9.5 Remark 276

4.5.10 Heat, Air, Moisture (HAM) Modelling, All Moisture Sources Combined 277

4.5.10.1 Modelling 277

4.5.10.2 Performance Requirements 278

4.5.10.3 Why Full Models Still Have Limitations 279

4.5.10.4 Usability of Full HAM Tools 283

4.6 Thermal Bridging 287

4.6.1 Definition 287

4.6.2 Performance Requirements 288

4.6.3 Consequences for the Envelope 288

4.7 Contact Coefficients 288

4.8 Hygrothermal Stress and Strain 288

4.9 Transparent Parts: Solar Transmittance 289

4.9.1 Definition 289

4.9.2 Performance Requirements 290

4.9.3 Consequences for the Envelope 290

Further Reading 290

5 The Envelope Parts Heat Air Moisture (HAM) Performances applied to Timber-Frame 295

5.1 In General 295

5.2 Assembly 295

5.3 Performance Evaluation 296

5.3.1 In General 296

5.3.2 Airtightness 296

5.3.3 Thermal Transmittance 297

5.3.4 Transient Response 299

5.3.5 Moisture Tolerance 300

5.3.5.1 Construction Moisture 300

5.3.5.2 Rain 300

5.3.5.3 Rising Damp 301

5.3.5.4 Hygroscopic Moisture and Surface Condensation 302

5.3.5.5 Interstitial Condensation 302

5.3.5.6 More Advanced Modelling 308

5.3.6 Thermal Bridging 310

Further Reading 310

Appendix: Heat, Air, Moisture (HAM) Material Properties 311

A.1 Heat Related, Standard Values; Applicable In- and Outside of the Thermal Insulation 311

A.2 Heat Related, Standard Values; Differentiating Between In- and Outside of the Thermal Insulation 315

A.3 Air-Related, Measured Values 323

A.4 Water Vapour Related: Vapour Resistance Factor, Standard Values 331

Index 337


Dr. Ir. Hugo S.L.C. Hens ist emeritierter Professor der Universität Leuven (KU Leuven), Belgien. Bis 1972 arbeitete er als Tragwerkplaner und Bauleiter in einem mittelgroßen Architekturbüro. Nach dem plötzlichen Tod seines Vorgängers und Förderers Professor A. de Grave und nach der Verteidigung seiner Doktorarbeit baute er ab 1975 schrittweise das Fachgebiet Bauphysik am Fachbereich Bauingenieurwesen auf. Er lehrte Bauphysik von 1975 bis 2003, Performance Based Building Design von 1975 bis 2005 und Gebäudetechnik von 1975 bis 1977 und von 1990 bis 2008. Hugo Hens war Autor und Mitautor von 68 begutachteten Zeitschriftenaufsätzen und 174 Konferenzbeiträgen über seine Forschungsarbeiten, und erstellte Hunderte von Schadensgutachten und Sanierungsplanungen. Von 1983 bis 1993 wirkte er als Koordinator der CIB W40 Working group für "Heat and Mass Transfer in Buildings". Zwischen 1986 und 2008 war er Beauftragter für die Anhänge 14, 24, 32 und 41 der IEA EXCO on Energy in Buildings and Communities. Er ist Mitglied der American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE).

Dr. Ir. Hugo S.L.C. Hens is an emeritus professor of the University of Leuven (KULeuven), Belgium. Until 1972, he worked as a structural engineer and site supervisor at a mid-sized architectural office. After the sudden death of his predecessor and promotor Professor A. de Grave in 1975 and after defending his PhD thesis, he stepwise built up the Department of Building Physics at the Department of Civil Engineering.
He taught Building Physics from 1975 to 2003, performance based building design from 1975 to 2005 and building services from 1975 to 1977 and 1990 to 2008. He authored and co-authored 68 peer reviewed journal papers and 174 conference papers about the research done, has helped to manage hundreds of building damage cases and acted as coordinator of the CIB W40 working group on Heat and Mass Transfer in Buildings from 1983 to 1993. Between 1986 and 2008, he was operating agent of the Annexes 14, 24, 32 and 41 of the IEA EXCO on Energy in Buildings and Communities. He is a fellow of the American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.