E-Book, Englisch, 585 Seiten, eBook
Hloch / Klichová / Krolczyk Advances in Manufacturing Engineering and Materials
1. Auflage 2018
ISBN: 978-3-319-99353-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the International Conference on Manufacturing Engineering and Materials (ICMEM 2018), 18–22 June, 2018, Nový Smokovec, Slovakia
E-Book, Englisch, 585 Seiten, eBook
Reihe: Lecture Notes in Mechanical Engineering
ISBN: 978-3-319-99353-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;9
3;Invited Papers;15
4;Study Programs in STEM Field in Eastern European Countries vs. Brain Drain;16
4.1;Abstract;16
4.2;1 Introduction;16
4.2.1;1.1 Why Is STEM Important?;16
4.3;2 The Role and Responsibility of the Government and the Academic Community;18
4.3.1;2.1 Investment to R&D;18
4.3.2;2.2 Correlation Between Scientific Potential and GDP on the Example of Croatia;20
4.4;3 Conclusions;22
4.5;References;23
5;Manufacturing in Times of Digital Business and Industry 4.0 - The Industrial Internet of Things Not Only Changes the Worldof Manufacturing;24
5.1;Abstract;24
5.2;1 Introduction;24
5.3;2 IoT Impact on Manufacturing Ecosystem;25
5.3.1;2.1 Production Logistics;25
5.3.2;2.2 Manufacturing;26
5.3.3;2.3 Distributed Manufacturing;26
5.3.4;2.4 Quality Management and Predictive Maintenance;26
5.4;3 Product Related Aspects;28
5.5;4 Requirements;28
5.6;5 Conclusion and Future Scope;29
5.7;References;30
6;A New Method for Gear Chamfering;31
6.1;Abstract;31
6.2;1 Initial Situation and Formation of Burr;31
6.3;2 Known Processes for Deburring and Gear Chamfering;32
6.4;3 The New Method for Gear Chamfering;35
6.5;4 Conclusions;38
6.6;Acknowledgments;39
6.7;References;39
7;Water Jet Technology Session;40
8;New Approach of Recycling of Abrasives for Water Jet Cutting;41
8.1;Abstract;41
8.2;1 Introduction;41
8.3;2 Abrasive Waste Standards;43
8.4;3 Recycling System;44
8.5;4 Conclusion;46
8.6;References;47
9;The Use of Areal Parameters for the Analysis of the Surface Machined Using the Abrasive Waterjet Technology;48
9.1;Abstract;48
9.2;1 Introduction;48
9.3;2 Standardised Parameters;49
9.3.1;2.1 Amplitude Parameters of Profile;49
9.3.2;2.2 Amplitude Parameters of Area;50
9.4;3 Experimental Setting;50
9.5;4 Methodology of Measurement;50
9.6;5 Results and Discussion;52
9.7;6 Conclusion;55
9.8;Acknowledgments;55
9.9;References;55
10;Research on Water Jet Cutting of Polymer Composites Based on Epoxy/Waste Fibres from Coconut Processing;57
10.1;Abstract;57
10.2;1 Introduction;57
10.3;2 Methodology;58
10.4;3 Results and Discussion;60
10.5;4 Conclusions;64
10.6;Acknowledgement;64
10.7;References;64
11;Recent Developments in Pulsating Water Jets;66
11.1;Abstract;66
11.2;1 Introduction;66
11.3;2 Background;67
11.4;3 Experimental Procedure;70
11.5;4 Results and Discussion;71
11.6;5 Conclusion;73
11.7;Acknowledgement;74
11.8;References;74
12;Investigation on Pulsating Liquid Jet with Physiological Saline on Aluminium Surface;75
12.1;Abstract;75
12.2;1 Introduction;75
12.3;2 Material and Method;77
12.4;3 Result and Discussion;79
12.5;4 Conclusion;81
12.6;References;82
13;Parametric Study During Abrasive Water Jet Turning of Hybrid Metal Matrix Composite;84
13.1;Abstract;84
13.2;1 Introduction;84
13.3;2 Experimental Procedure;86
13.4;3 Result and Discussion;88
13.5;4 Conclusion;94
13.6;References;94
14;Effect of Frequency Change During Pulsed Waterjet Interaction with Stainless Steel;97
14.1;Abstract;97
14.2;1 Introduction;98
14.3;2 Materials and Methods;99
14.4;3 Results and Discussion;101
14.4.1;3.1 Surface Erosion;101
14.4.2;3.2 Microstructural Topography;103
14.4.3;3.3 Micro Hardness Measurements;104
14.5;4 Conclusion;106
14.6;Acknowledgements;107
14.7;0;107
14.8;References;107
15;Microstructure, Properties and Damage Mechanisms by Water Jet Cutting of TiB2-Ti Cermets Prepared by SPS;109
15.1;Abstract;109
15.2;1 Introduction;109
15.3;2 Experimental Material and Methodology;110
15.4;3 Results and Discussion;111
15.5;4 Conclusions;115
15.6;Acknowledgement;116
15.7;References;116
16;Investigation on Feed Rate Influence on Surface Quality in Abrasive Water Jet Cutting of Composite Materials, Monitoring Acoustic Emissions;117
16.1;Abstract;117
16.2;1 Introduction;117
16.3;2 Experimental Procedure;118
16.4;3 Results and Discussions;120
16.4.1;3.1 Analysis of the Signal;120
16.4.2;3.2 Analysis of the Surface Roughness Using AE Signal;121
16.5;4 Conclusions;123
16.6;Acknowledgments;124
16.7;References;124
17;Comparison of Non-destructive Sensing Methods on Surface Created by Waterjet Technology;126
17.1;Abstract;126
17.2;1 Introduction;126
17.3;2 Experimental Setting;127
17.4;3 Methodology of Measurement;128
17.4.1;3.1 Optical Profilometer MicroProf FRT;128
17.4.2;3.2 Digital Microscope VHX-5100;128
17.4.3;3.3 X-Ray CT;129
17.4.4;3.4 Results and Discussion;131
17.5;4 Conclusion;133
17.6;Acknowledgments;134
17.7;References;134
18;Investigation of Limestone Cutting Efficiency by the Abrasive Water Suspension Jet;136
18.1;Abstract;136
18.2;1 Introduction;136
18.3;2 Materials and Method;137
18.3.1;2.1 Abrasive Material;137
18.3.2;2.2 Treatment Material;137
18.3.3;2.3 Test Rig;138
18.3.4;2.4 Test Method;139
18.4;3 Results and Discussion;141
18.5;4 Conclusions;145
18.6;References;145
19;Erosion Test with High-speed Water Jet Applied on Surface of Concrete Treated with Solution of Modified Lithium Silicates;147
19.1;Abstract;147
19.2;1 Introduction;147
19.3;2 Experimental Set-up and Procedure;148
19.3.1;2.1 Materials;148
19.3.2;2.2 Erosion Test Method;149
19.3.3;2.3 Evaluation of Erosion;149
19.4;3 Experimental Results and Discussion;151
19.4.1;3.1 Average Maximum Depth of Erosion;151
19.4.2;3.2 Volumetric Erosion Rate;153
19.5;4 Conclusion;154
19.6;Acknowledgement;154
19.7;References;154
20;Analysis of Micro Continuous Water Jet Based on Numerical Modelling and Flow Monitoring;156
20.1;Abstract;156
20.2;1 Introduction;156
20.3;2 Methods;157
20.3.1;2.1 Scanning of Nozzle Geometry Using Micro X-Ray Computed Tomography;157
20.3.2;2.2 CFD Modelling of Water Flow Inside Nozzle;159
20.3.3;2.3 Optical Diagnostic Techniques for Micro Continuous Water Jet Visualization;160
20.4;3 Experiment;160
20.5;4 Results and Discussion;163
20.6;5 Conclusion;165
20.7;Acknowledgements;166
20.8;References;166
21;An Acoustic Emission Study of Rock Disintegration by Pulsating Water-Jet;168
21.1;Abstract;168
21.2;1 Introduction;168
21.3;2 Materials and Method;170
21.4;3 Result and Discussion;170
21.5;4 Conclusion;173
21.6;Acknowledgements;173
21.7;References;174
22;Evaluation of Possibility of AISI 304 Stainless Steel Mechanical Surface Treatment with Ultrasonically Enhanced Pulsating Water Jet;175
22.1;Abstract;175
22.2;1 Introduction;175
22.2.1;1.1 Water Jet Technology;175
22.2.2;1.2 Mechanical Surface Treatment;176
22.2.3;1.3 Ultrasonically Enhanced Pulsating Water Jet;176
22.3;2 Experimental Procedure;178
22.4;3 Results;179
22.4.1;3.1 Surface Topography Evaluation;179
22.4.2;3.2 Evaluation of Microstructure in Transverse Cut;179
22.4.3;3.3 Evaluation of Microhardness in Transverse Cut;181
22.5;4 Conclusions;181
22.6;Acknowledgement;182
22.7;References;182
23;Non–traditional Machining of Inconel 600 Material;185
23.1;Abstract;185
23.2;1 Introduction;185
23.3;2 Materials and Methods;186
23.4;3 Results and Discussions;188
23.5;4 Conclusions;190
23.6;Acknowledgment;190
23.7;References;190
24;(Un)conventional Technology Session;192
25;Mapping Requirements and Roadmap Definition for Introducing I 4.0in SME Environment;193
25.1;Abstract;193
25.2;1 Introduction;193
25.3;2 Related Works;194
25.4;3 Methodological Framework;196
25.4.1;3.1 Creation of the Questionnaire;196
25.4.2;3.2 Mapping of the Requirements;196
25.4.3;3.3 Results Processing;196
25.5;4 Description of Obtained Results;200
25.6;5 Conclusions;202
25.7;Acknowledgement;202
25.8;References;203
26;Dimensional Characterization of Prosthesis Bearings for Tribological Modelling;205
26.1;Abstract;205
26.2;1 Introduction;205
26.3;2 Materials and Methods;207
26.3.1;2.1 Shape Analysis;207
26.3.2;2.2 Topographical Analysis;208
26.4;3 Results;208
26.5;4 Discussion;211
26.6;5 Conclusions;212
26.7;Acknowledgements;212
26.8;References;213
27;Accelerated Method of Cutting Tool Quality Estimation During Milling Process of Inconel 718 Alloy;215
27.1;Abstract;215
27.2;1 Introduction;215
27.3;2 Materials and Methods;217
27.3.1;2.1 Description of the Proposed Method;217
27.3.2;2.2 Test Stand and Experimental Conditions;218
27.4;3 Results and Discussion;219
27.4.1;3.1 Development of Tool Wear Model;219
27.4.2;3.2 Results of Optimization Process and Comparison of Tool Quality Between the Three Different Cutting Tools;220
27.5;4 Conclusions;222
27.6;Acknowledgements;222
27.7;References;222
28;An Investigation on Tool Flank Wear Using Alumina/MoS2 Hybrid Nanofluid in Turning Operation;223
28.1;Abstract;223
28.2;1 Introduction;223
28.3;2 Materials and Method;224
28.4;3 Result and Discussion;225
28.4.1;3.1 Tribological Testing of Nanofluids;225
28.4.2;3.2 Machining with Nanofluids;226
28.5;4 Conclusion;228
28.6;References;229
29;Additive Printing of Gold Nanoparticles on Paper Substrate Through Office Ink-Jet Printer;230
29.1;Abstract;230
29.2;1 Introduction;231
29.3;2 Materials and Methods;231
29.3.1;2.1 USP Synthesis of AuNPs;232
29.3.2;2.2 Characterization of AuNPs;232
29.4;3 Results and Discussion;234
29.5;4 Conclusions;236
29.6;Acknowledgement;237
29.7;References;237
30;Preliminary Study on Staggered Herringbone Micromixer Design Suitable for Micro EDM Milling;239
30.1;Abstract;239
30.2;1 Introduction;239
30.3;2 Materials and Methods;241
30.3.1;2.1 SHM Geometry;241
30.3.2;2.2 Micro EDM Milling;241
30.3.3;2.3 Technological Model of Micro EDM Milling;242
30.3.4;2.4 Simulation of SHM Mixing Performance;243
30.3.5;2.5 SHM Design Optimization Methodology;244
30.4;3 Results and Discussion;244
30.5;4 Conclusions;245
30.6;Acknowledgments;246
30.7;References;246
31;Experimental Analysis of the Cutting Force Components in Laser-Assisted Turning of Ti6Al4V;247
31.1;Abstract;247
31.2;1 Introduction;247
31.3;2 Experiment Details;249
31.3.1;2.1 The Test Stand;249
31.3.2;2.2 Research Condition;249
31.4;3 Results and Discussion;250
31.5;4 Conclusions;254
31.6;Acknowledgements;255
31.7;References;255
32;Critical Failure Analysis of Lower Grinding Ring of Ball and Race Mill;256
32.1;Abstract;256
32.2;1 Introduction;256
32.3;2 Description of Lower Crushing Ring;258
32.4;3 Summary of Failures and Methodology;259
32.5;4 Results and Discussion;260
32.5.1;4.1 Chemical Composition;261
32.5.2;4.2 Microstructure Examination;262
32.5.3;4.3 Evaluation of Hardness;262
32.5.4;4.4 Analysis of Erection Process;262
32.5.5;4.5 Analysis of Operational Parameters;262
32.6;5 Conclusions;262
32.7;References;263
33;The Influence of the Application of EP Additive in the Minimum Quantity Cooling Lubrication Method on the Tool Wear and Surface Roughness in the Process of Turning316L Steel;264
33.1;Abstract;264
33.2;1 Introduction;265
33.3;2 Experimental Procedure;266
33.4;3 Experimental Results and Discussion;267
33.5;4 Conclusion;271
33.6;References;271
34;Time-Dependent Feed Force Modelling to Apply Feed Rate Strategies in the Drilling of Unsupported CFRP-Structures;274
34.1;Abstract;274
34.2;1 Introduction;274
34.2.1;1.1 Customized Feed Rate Strategies with Regard to the Clamping Situation;274
34.2.2;1.2 State of the Art in the Drilling of Flexible Composite Structures;275
34.2.3;1.3 Research Concept for the Application of Customized Feed Rate Strategies;277
34.3;2 Materials and Methods;277
34.3.1;2.1 Summary of Materials, Tools and Measurement Equipment;277
34.3.2;2.2 Description of the Mechanistic Modelling Approach;279
34.3.3;2.3 Determination of the Specific Feed Forces;281
34.4;3 Results and Discussion;283
34.4.1;3.1 Representation of the Threshold Area for Unsupported Drilling with M21/T800S;283
34.4.2;3.2 Evaluation of the Simulated Feed Forces and the Processing Time;284
34.4.3;3.3 Application of Feed Rate Strategies for Unsupported CFRP-Structures;286
34.5;4 Conclusions and Future Scope;288
34.6;References;289
35;Recognition of Assembly Parts by Convolutional Neural Networks;291
35.1;Abstract;291
35.2;1 Introduction to Augmented Reality and Deep Learning in Industrial Tasks;291
35.3;2 Assembly Used for Experiments and Teaching Data;292
35.4;3 Comparison of Standard Image Processing to CNN;293
35.4.1;3.1 Standard Image Processing Algorithm;293
35.4.2;3.2 Features and Part Detection by Deep Neural Networks;294
35.4.3;3.3 Comparison of Deep Neural Networks and Standard Image Processing;295
35.5;4 Implementation to Experimental Device (SW/HW);296
35.6;5 Experimental Results for Transfer Learning of Selected Models;297
35.7;6 Conclusion;298
35.8;Acknowledgement;298
35.9;References;298
36;The Use of Technology Local Heating by Laser for Turning of Difficult to Machine Materials;300
36.1;Abstract;300
36.2;1 Introduction;300
36.3;2 Machining with Preheating;300
36.3.1;2.1 Laser-Assisted Turning;301
36.3.2;2.2 Laser-Assisted Turning of Chromium Alloy;303
36.4;3 Proposal to Technology of Local Lase Heating for Machining;303
36.4.1;3.1 Describe of Existing Technological Process;303
36.4.2;3.2 Produced Part;304
36.4.3;3.3 Machines;304
36.4.4;3.4 Cutting Conditions;305
36.5;4 Technical and Economical Evaluation;306
36.6;5 Conclusion;307
36.7;Acknowledgement;308
36.8;References;308
37;Contributions to the Development of an Ontology in Logistics of Manufacturing;309
37.1;Abstract;309
37.2;1 Introduction;309
37.3;2 On the Ontology Aspects on Logistics Activities;311
37.4;3 Approach;312
37.5;4 Conclusions;315
37.6;References;315
38;Advanced Output Characteristics of Welding Power Source for Pulsed GMAW;317
38.1;Abstract;317
38.2;1 Introduction;317
38.3;2 Experimental Procedures;318
38.4;3 Results and Discussion;318
38.4.1;3.1 Standard Procedure to Determine Output Characteristic;318
38.4.2;3.2 Output Characteristics Obtained in Second Test;320
38.5;4 Conclusion;323
38.6;References;324
39;Investigation of the Effect of Johnson-Cook Constitutive Model Parameters on Results of the FEM Turning Simulation;325
39.1;Abstract;325
39.2;1 Introduction;325
39.3;2 Johnson-Cook Constitutive Model;326
39.4;3 Input Data;326
39.5;4 Simulation Results;327
39.6;5 Summary and Conclusions;331
39.7;References;332
40;Comparative Analysis of Surface Finishing for Different Cutting Strategies of Parts Made from POM C;334
40.1;Abstract;334
40.2;1 Introduction;334
40.3;2 Experimental Procedure;335
40.3.1;2.1 Experimental Design;335
40.3.2;2.2 Equipment and Measurements;336
40.4;3 Results and Discussions;337
40.4.1;3.1 Dimensional Accuracy;337
40.4.2;3.2 Shape Deviation;338
40.4.3;3.3 Surface Roughness;338
40.4.4;3.4 Surface Texture;340
40.5;4 Conclusions;341
40.6;Acknowledgment;341
40.7;References;342
41;Investigation of the Effect of Process Parameters on Surface Roughness in EDM Machining of ORVAR® Supreme Die Steel;343
41.1;Abstract;343
41.2;1 Introduction;343
41.3;2 Experimental Setup;344
41.4;3 Results and Discussion;345
41.5;4 Conclusions;348
41.6;References;349
42;The Influence of EP/AW Addition in the MQL Method on the Parameters of Surface Geometrical Structure in the Process of Turning 316L Steel;351
42.1;Abstract;351
42.2;1 Introduction;352
42.3;2 Experimental Procedure;353
42.4;3 Experimental Procedure;355
42.5;4 Conclusion;358
42.6;References;359
43;Change of the Substrate Surface After Removal Multiple Plasma Spraying Layers;361
43.1;Abstract;361
43.2;1 Introduction;361
43.3;2 Materials and Methods;363
43.3.1;2.1 Tested Materials;363
43.3.2;2.2 Experimental Conditions;363
43.4;3 Results and Discussion;366
43.4.1;3.1 Duralumin;366
43.4.2;3.2 Nickel;367
43.4.3;3.3 Chromium Steel;368
43.4.4;3.4 Hard Chrome;369
43.5;4 Conclusions;370
43.6;Acknowledgments;370
43.7;References;371
44;Tool Wear Measurement in Single Point Incremental Forming;372
44.1;Abstract;372
44.2;1 Introduction;372
44.3;2 Experimental Instigation;374
44.3.1;2.1 Forming Tool;374
44.3.2;2.2 Experiment;375
44.3.3;2.3 Tool Wear Measurement;375
44.4;3 Statistical Analysis;378
44.5;4 Result and Discussion;379
44.6;5 Conclusion;379
44.7;References;380
45;Materials;382
46;Increasing Compressor Wheel Fatigue Life Through Residual Stress Generation;383
46.1;Abstract;383
46.2;1 Introduction;383
46.3;2 Rotating Cylinder: Generating Residual Stress;384
46.3.1;2.1 Wheel ‘Autofrettage’ Process;384
46.3.2;2.2 Theoretical Model;384
46.3.3;2.3 Finite Element Analysis;386
46.3.4;2.4 Material Model Approximation;387
46.4;3 Wheel Analysis;388
46.4.1;3.1 Example Compressor Wheel;388
46.4.2;3.2 Finite Element Model;389
46.4.3;3.3 Residual Stress Generated;389
46.4.4;3.4 Impact of Residual Stress;391
46.5;4 Designing with Residual Stress;391
46.5.1;4.1 Approximate Theoretical Model;391
46.5.2;4.2 Theoretical Model as a Design Tool;392
46.6;5 Conclusions;393
46.7;References;393
47;Preliminary Study of Residual Stress Measurement Using Eddy Currents Phasor Angle;394
47.1;Abstract;394
47.2;1 Introduction;394
47.3;2 Experimental Methods;396
47.3.1;2.1 Experimental Technique;396
47.3.2;2.2 Experimental Procedure;397
47.4;3 Results;401
47.5;4 Conclusions;403
47.6;Acknowledgement;403
47.7;References;403
48;Forces and Process Dynamics in Profiling of AlCu4MgSi Aluminium Alloy;406
48.1;Abstract;406
48.2;1 Introduction;406
48.3;2 Experimental Procedure;407
48.4;3 Research Results;408
48.5;4 Conclusion;412
48.6;References;413
49;A Polyurethane/Carbon Black Composite Absorber for Low Frequency Waves;415
49.1;Abstract;415
49.2;1 Introduction;415
49.3;2 Material Characteristics and Experimental Setup;416
49.3.1;2.1 Pu/CB Pigment Coating;416
49.3.2;2.2 Contact Angle Measurements;416
49.3.3;2.3 Experimental Set-up;417
49.4;3 Results;419
49.5;4 Conclusion;419
49.6;References;420
50;The Effect of Additional Shielding Gas on Properties and Erosion Resistance of High Chromium Hardfacing;421
50.1;Abstract;421
50.2;1 Introduction;421
50.3;2 Experimental Procedure;422
50.4;3 Results and Discussion;423
50.5;4 Conclusions;427
50.6;References;428
51;Analysis of the Legal Risk in the Scientific Experiment of the Machining of Magnesium Alloys;429
51.1;Abstract;429
51.2;1 Introduction;429
51.3;2 Risk of Legal Liability in the Experiment;430
51.4;3 Challenges in Machining of Magnesium Alloys;432
51.5;4 Analysis of Legal Risk;433
51.6;5 Conclusions;437
51.7;References;437
52;Prediction of Tensile Failure Load for Maraging Steel Weldment by Acoustic Emission Technique;439
52.1;Abstract;439
52.2;1 Introduction;440
52.3;2 Experimental Test Set-Up;441
52.3.1;2.1 AE Testing and Data Acquisition;442
52.3.2;2.2 AE Amplitude Distribution;443
52.4;3 Results and Discussion;445
52.5;4 Conclusions;448
52.6;Acknowledgements;449
52.7;References;449
53;Measurements of the Friction Coefficient: Discussion on the Results in the Framework of the Time Series Analysis;451
53.1;Abstract;451
53.2;1 Introduction;451
53.3;2 Experimental Setup;452
53.4;3 Methods;453
53.5;4 Data Analysis and Results;456
53.6;5 Conclusion;461
53.7;References;462
54;Experimental Description of the Aging of the Coconut Shell Powder/Epoxy Composite;464
54.1;Abstract;464
54.2;1 Introduction;464
54.3;2 Materials and Methods;465
54.3.1;2.1 Filler and Matrix;465
54.3.2;2.2 Tensile Strength of Composite Systems;466
54.3.3;2.3 Tensile Shear Strength;466
54.3.4;2.4 Degradation;466
54.4;3 Results and Discussion;467
54.5;4 Conclusions;471
54.6;Acknowledgements;471
54.7;References;471
55;Fluid Film Pressure Description in Finite Turbulent Lubricated Journal Bearings by Using the Warner’s Theory;473
55.1;Abstract;473
55.2;1 Introduction;473
55.3;2 Theoretical Analysis;475
55.4;3 Results;479
55.5;4 Conclusions;481
55.6;References;482
56;Influence of Processing Parameters on Residual Stress in Injection Molded Parts;484
56.1;Abstract;484
56.2;1 Introduction;484
56.3;2 Simulation Research;485
56.4;3 Results and Discussion;488
56.5;4 Conclusions;491
56.6;References;491
57;Shape Memory Alloy (SMA) as a Potential Damper in Structural Vibration Control;493
57.1;Abstract;493
57.2;1 Introduction;493
57.3;2 Material and Method;494
57.4;3 Results and Discussion;497
57.5;4 Conclusions;498
57.6;Acknowledgement;499
57.7;References;499
58;Study of Cutting Tool Durability at a Short-Term Discontinuous Turning Test;501
58.1;Abstract;501
58.2;1 Introduction;501
58.3;2 Conditions of Experiments;503
58.4;3 Results and Discussion;505
58.5;4 Conclusion;508
58.6;Acknowledgement;508
58.7;References;508
59;Behavior of the Beam with a Lightweight Porous Structure in Its Core;510
59.1;Abstract;510
59.2;1 Introduction;510
59.3;2 State of the Art;511
59.4;3 Research Conditions;512
59.5;4 Results and Discussion;514
59.6;5 Conclusion;517
59.7;Acknowledgment;517
59.8;References;517
60;Advanced Preparation of the NC Programs with Usage of Strategy Manager;519
60.1;Abstract;519
60.2;1 Introduction;519
60.3;2 Optimization of the Machining Processes;520
60.4;3 Features and NC Strategies;520
60.5;4 Application;523
60.6;5 Conclusion;525
60.7;References;525
61;Modeling and Validation of Spindle Shaft Followed by Goal Driven Optimization;526
61.1;Abstract;526
61.2;1 Introduction;526
61.3;2 Spindle Bearing System;528
61.4;3 Mathematical Modeling for Spindle Shaft;530
61.4.1;3.1 Deflection of Spindle Axis Due to Bending;530
61.4.2;3.2 Deflection of Spindle Axis Due to Compliance of Spindle Supports;532
61.5;4 FEA Modeling and Validation of Mathematical Model;533
61.6;5 Goal Driven Optimization (GDO) of Spindle Shaft Design;534
61.7;6 Conclusions;537
61.8;References;538
62;Modeling and Simulation of Technological Factors in Bakery Industry;539
62.1;Abstract;539
62.2;1 Introduction;539
62.2.1;1.1 Bakery Industry;539
62.2.2;1.2 Distribution Channels Used in the Bakery Industry;541
62.3;2 Factors That Influence the Bakery Products Distribution;542
62.4;3 Conclusions;544
62.5;4 Research Directions;545
62.6;References;545
63;Numerical Study of Rapid Cooling of Injection Molds;547
63.1;Abstract;547
63.2;1 Introduction;547
63.3;2 Simulation Research;548
63.3.1;2.1 Physical Model;548
63.3.2;2.2 Governing Equations;549
63.3.3;2.3 Parameter Definitions;550
63.3.4;2.4 Boundary and Initial Conditions;550
63.4;3 Results and Discussion;551
63.5;4 Conclusions;553
63.6;References;554
64;Influence of Fill Imbalance on Pressure Drop in Injection Molding;556
64.1;Abstract;556
64.2;1 Introduction;556
64.3;2 Simulation Research;558
64.4;3 Results and Discussion;559
64.5;4 Conclusions;563
64.6;References;563
65;Assessment of the Production Reducer for Clamping the Drilling Tools;565
65.1;Abstract;565
65.2;1 Introduction;565
65.3;2 Select the Method of Production;566
65.3.1;2.1 Material of Thin-Walled Reducer for Clamping Mandrel;566
65.3.2;2.2 Technology of the Production of Thin-Walled Clamping Mandrel;567
65.3.3;2.3 Measurement of Co-axial Alignment of Cylindrical Surfaces;571
65.4;3 Discussion;573
65.5;4 Conclusion;573
65.6;Acknowledgements;573
65.7;References;573
66;Evaluation of Damage of Almandine Garnet Grains by N2 Adsorption Method;575
66.1;Abstract;575
66.2;1 Introduction;575
66.3;2 Experimental Method;576
66.4;3 Results and Discussion;576
66.4.1;3.1 Properties of Natural Garnets for AWJ Technology;576
66.4.2;3.2 N2 Adsorption and Desorption Isotherms;577
66.4.3;3.3 Pore Structure Calculated from BJH Model;579
66.5;4 Summary;581
66.6;Acknowledgement;581
66.7;References;582
67;Author Index;583