Hloch / Klichová / Krolczyk | Advances in Manufacturing Engineering and Materials | E-Book | sack.de
E-Book

E-Book, Englisch, 585 Seiten, eBook

Reihe: Lecture Notes in Mechanical Engineering

Hloch / Klichová / Krolczyk Advances in Manufacturing Engineering and Materials

Proceedings of the International Conference on Manufacturing Engineering and Materials (ICMEM 2018), 18–22 June, 2018, Nový Smokovec, Slovakia
1. Auflage 2018
ISBN: 978-3-319-99353-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of the International Conference on Manufacturing Engineering and Materials (ICMEM 2018), 18–22 June, 2018, Nový Smokovec, Slovakia

E-Book, Englisch, 585 Seiten, eBook

Reihe: Lecture Notes in Mechanical Engineering

ISBN: 978-3-319-99353-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book reports on cutting-edge research and technologies in the field of advanced manufacturing and materials, with a special emphasis on unconventional machining process, rapid prototyping and biomaterials. Based on the International Conference on Manufacturing Engineering and Materials (ICMEM 2018), held in Nový Smokovec, Slovakia on 18–22 June 2018, it covers advances in various disciplines, which are expected to increase the industry’s competitiveness with regard to sustainable development and preservation of the environment and natural resources. Condition monitoring, industrial automation, and diverse fabrication processes such as welding, casting and molding, as well as tribology and bioengineering, are just a few of the topics discussed in the book’s wealth of authoritative contributions.
Hloch / Klichová / Krolczyk Advances in Manufacturing Engineering and Materials jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Preface;6
2;Contents;9
3;Invited Papers;15
4;Study Programs in STEM Field in Eastern European Countries vs. Brain Drain;16
4.1;Abstract;16
4.2;1 Introduction;16
4.2.1;1.1 Why Is STEM Important?;16
4.3;2 The Role and Responsibility of the Government and the Academic Community;18
4.3.1;2.1 Investment to R&D;18
4.3.2;2.2 Correlation Between Scientific Potential and GDP on the Example of Croatia;20
4.4;3 Conclusions;22
4.5;References;23
5;Manufacturing in Times of Digital Business and Industry 4.0 - The Industrial Internet of Things Not Only Changes the Worldof Manufacturing;24
5.1;Abstract;24
5.2;1 Introduction;24
5.3;2 IoT Impact on Manufacturing Ecosystem;25
5.3.1;2.1 Production Logistics;25
5.3.2;2.2 Manufacturing;26
5.3.3;2.3 Distributed Manufacturing;26
5.3.4;2.4 Quality Management and Predictive Maintenance;26
5.4;3 Product Related Aspects;28
5.5;4 Requirements;28
5.6;5 Conclusion and Future Scope;29
5.7;References;30
6;A New Method for Gear Chamfering;31
6.1;Abstract;31
6.2;1 Initial Situation and Formation of Burr;31
6.3;2 Known Processes for Deburring and Gear Chamfering;32
6.4;3 The New Method for Gear Chamfering;35
6.5;4 Conclusions;38
6.6;Acknowledgments;39
6.7;References;39
7;Water Jet Technology Session;40
8;New Approach of Recycling of Abrasives for Water Jet Cutting;41
8.1;Abstract;41
8.2;1 Introduction;41
8.3;2 Abrasive Waste Standards;43
8.4;3 Recycling System;44
8.5;4 Conclusion;46
8.6;References;47
9;The Use of Areal Parameters for the Analysis of the Surface Machined Using the Abrasive Waterjet Technology;48
9.1;Abstract;48
9.2;1 Introduction;48
9.3;2 Standardised Parameters;49
9.3.1;2.1 Amplitude Parameters of Profile;49
9.3.2;2.2 Amplitude Parameters of Area;50
9.4;3 Experimental Setting;50
9.5;4 Methodology of Measurement;50
9.6;5 Results and Discussion;52
9.7;6 Conclusion;55
9.8;Acknowledgments;55
9.9;References;55
10;Research on Water Jet Cutting of Polymer Composites Based on Epoxy/Waste Fibres from Coconut Processing;57
10.1;Abstract;57
10.2;1 Introduction;57
10.3;2 Methodology;58
10.4;3 Results and Discussion;60
10.5;4 Conclusions;64
10.6;Acknowledgement;64
10.7;References;64
11;Recent Developments in Pulsating Water Jets;66
11.1;Abstract;66
11.2;1 Introduction;66
11.3;2 Background;67
11.4;3 Experimental Procedure;70
11.5;4 Results and Discussion;71
11.6;5 Conclusion;73
11.7;Acknowledgement;74
11.8;References;74
12;Investigation on Pulsating Liquid Jet with Physiological Saline on Aluminium Surface;75
12.1;Abstract;75
12.2;1 Introduction;75
12.3;2 Material and Method;77
12.4;3 Result and Discussion;79
12.5;4 Conclusion;81
12.6;References;82
13;Parametric Study During Abrasive Water Jet Turning of Hybrid Metal Matrix Composite;84
13.1;Abstract;84
13.2;1 Introduction;84
13.3;2 Experimental Procedure;86
13.4;3 Result and Discussion;88
13.5;4 Conclusion;94
13.6;References;94
14;Effect of Frequency Change During Pulsed Waterjet Interaction with Stainless Steel;97
14.1;Abstract;97
14.2;1 Introduction;98
14.3;2 Materials and Methods;99
14.4;3 Results and Discussion;101
14.4.1;3.1 Surface Erosion;101
14.4.2;3.2 Microstructural Topography;103
14.4.3;3.3 Micro Hardness Measurements;104
14.5;4 Conclusion;106
14.6;Acknowledgements;107
14.7;0;107
14.8;References;107
15;Microstructure, Properties and Damage Mechanisms by Water Jet Cutting of TiB2-Ti Cermets Prepared by SPS;109
15.1;Abstract;109
15.2;1 Introduction;109
15.3;2 Experimental Material and Methodology;110
15.4;3 Results and Discussion;111
15.5;4 Conclusions;115
15.6;Acknowledgement;116
15.7;References;116
16;Investigation on Feed Rate Influence on Surface Quality in Abrasive Water Jet Cutting of Composite Materials, Monitoring Acoustic Emissions;117
16.1;Abstract;117
16.2;1 Introduction;117
16.3;2 Experimental Procedure;118
16.4;3 Results and Discussions;120
16.4.1;3.1 Analysis of the Signal;120
16.4.2;3.2 Analysis of the Surface Roughness Using AE Signal;121
16.5;4 Conclusions;123
16.6;Acknowledgments;124
16.7;References;124
17;Comparison of Non-destructive Sensing Methods on Surface Created by Waterjet Technology;126
17.1;Abstract;126
17.2;1 Introduction;126
17.3;2 Experimental Setting;127
17.4;3 Methodology of Measurement;128
17.4.1;3.1 Optical Profilometer MicroProf FRT;128
17.4.2;3.2 Digital Microscope VHX-5100;128
17.4.3;3.3 X-Ray CT;129
17.4.4;3.4 Results and Discussion;131
17.5;4 Conclusion;133
17.6;Acknowledgments;134
17.7;References;134
18;Investigation of Limestone Cutting Efficiency by the Abrasive Water Suspension Jet;136
18.1;Abstract;136
18.2;1 Introduction;136
18.3;2 Materials and Method;137
18.3.1;2.1 Abrasive Material;137
18.3.2;2.2 Treatment Material;137
18.3.3;2.3 Test Rig;138
18.3.4;2.4 Test Method;139
18.4;3 Results and Discussion;141
18.5;4 Conclusions;145
18.6;References;145
19;Erosion Test with High-speed Water Jet Applied on Surface of Concrete Treated with Solution of Modified Lithium Silicates;147
19.1;Abstract;147
19.2;1 Introduction;147
19.3;2 Experimental Set-up and Procedure;148
19.3.1;2.1 Materials;148
19.3.2;2.2 Erosion Test Method;149
19.3.3;2.3 Evaluation of Erosion;149
19.4;3 Experimental Results and Discussion;151
19.4.1;3.1 Average Maximum Depth of Erosion;151
19.4.2;3.2 Volumetric Erosion Rate;153
19.5;4 Conclusion;154
19.6;Acknowledgement;154
19.7;References;154
20;Analysis of Micro Continuous Water Jet Based on Numerical Modelling and Flow Monitoring;156
20.1;Abstract;156
20.2;1 Introduction;156
20.3;2 Methods;157
20.3.1;2.1 Scanning of Nozzle Geometry Using Micro X-Ray Computed Tomography;157
20.3.2;2.2 CFD Modelling of Water Flow Inside Nozzle;159
20.3.3;2.3 Optical Diagnostic Techniques for Micro Continuous Water Jet Visualization;160
20.4;3 Experiment;160
20.5;4 Results and Discussion;163
20.6;5 Conclusion;165
20.7;Acknowledgements;166
20.8;References;166
21;An Acoustic Emission Study of Rock Disintegration by Pulsating Water-Jet;168
21.1;Abstract;168
21.2;1 Introduction;168
21.3;2 Materials and Method;170
21.4;3 Result and Discussion;170
21.5;4 Conclusion;173
21.6;Acknowledgements;173
21.7;References;174
22;Evaluation of Possibility of AISI 304 Stainless Steel Mechanical Surface Treatment with Ultrasonically Enhanced Pulsating Water Jet;175
22.1;Abstract;175
22.2;1 Introduction;175
22.2.1;1.1 Water Jet Technology;175
22.2.2;1.2 Mechanical Surface Treatment;176
22.2.3;1.3 Ultrasonically Enhanced Pulsating Water Jet;176
22.3;2 Experimental Procedure;178
22.4;3 Results;179
22.4.1;3.1 Surface Topography Evaluation;179
22.4.2;3.2 Evaluation of Microstructure in Transverse Cut;179
22.4.3;3.3 Evaluation of Microhardness in Transverse Cut;181
22.5;4 Conclusions;181
22.6;Acknowledgement;182
22.7;References;182
23;Non–traditional Machining of Inconel 600 Material;185
23.1;Abstract;185
23.2;1 Introduction;185
23.3;2 Materials and Methods;186
23.4;3 Results and Discussions;188
23.5;4 Conclusions;190
23.6;Acknowledgment;190
23.7;References;190
24;(Un)conventional Technology Session;192
25;Mapping Requirements and Roadmap Definition for Introducing I 4.0in SME Environment;193
25.1;Abstract;193
25.2;1 Introduction;193
25.3;2 Related Works;194
25.4;3 Methodological Framework;196
25.4.1;3.1 Creation of the Questionnaire;196
25.4.2;3.2 Mapping of the Requirements;196
25.4.3;3.3 Results Processing;196
25.5;4 Description of Obtained Results;200
25.6;5 Conclusions;202
25.7;Acknowledgement;202
25.8;References;203
26;Dimensional Characterization of Prosthesis Bearings for Tribological Modelling;205
26.1;Abstract;205
26.2;1 Introduction;205
26.3;2 Materials and Methods;207
26.3.1;2.1 Shape Analysis;207
26.3.2;2.2 Topographical Analysis;208
26.4;3 Results;208
26.5;4 Discussion;211
26.6;5 Conclusions;212
26.7;Acknowledgements;212
26.8;References;213
27;Accelerated Method of Cutting Tool Quality Estimation During Milling Process of Inconel 718 Alloy;215
27.1;Abstract;215
27.2;1 Introduction;215
27.3;2 Materials and Methods;217
27.3.1;2.1 Description of the Proposed Method;217
27.3.2;2.2 Test Stand and Experimental Conditions;218
27.4;3 Results and Discussion;219
27.4.1;3.1 Development of Tool Wear Model;219
27.4.2;3.2 Results of Optimization Process and Comparison of Tool Quality Between the Three Different Cutting Tools;220
27.5;4 Conclusions;222
27.6;Acknowledgements;222
27.7;References;222
28;An Investigation on Tool Flank Wear Using Alumina/MoS2 Hybrid Nanofluid in Turning Operation;223
28.1;Abstract;223
28.2;1 Introduction;223
28.3;2 Materials and Method;224
28.4;3 Result and Discussion;225
28.4.1;3.1 Tribological Testing of Nanofluids;225
28.4.2;3.2 Machining with Nanofluids;226
28.5;4 Conclusion;228
28.6;References;229
29;Additive Printing of Gold Nanoparticles on Paper Substrate Through Office Ink-Jet Printer;230
29.1;Abstract;230
29.2;1 Introduction;231
29.3;2 Materials and Methods;231
29.3.1;2.1 USP Synthesis of AuNPs;232
29.3.2;2.2 Characterization of AuNPs;232
29.4;3 Results and Discussion;234
29.5;4 Conclusions;236
29.6;Acknowledgement;237
29.7;References;237
30;Preliminary Study on Staggered Herringbone Micromixer Design Suitable for Micro EDM Milling;239
30.1;Abstract;239
30.2;1 Introduction;239
30.3;2 Materials and Methods;241
30.3.1;2.1 SHM Geometry;241
30.3.2;2.2 Micro EDM Milling;241
30.3.3;2.3 Technological Model of Micro EDM Milling;242
30.3.4;2.4 Simulation of SHM Mixing Performance;243
30.3.5;2.5 SHM Design Optimization Methodology;244
30.4;3 Results and Discussion;244
30.5;4 Conclusions;245
30.6;Acknowledgments;246
30.7;References;246
31;Experimental Analysis of the Cutting Force Components in Laser-Assisted Turning of Ti6Al4V;247
31.1;Abstract;247
31.2;1 Introduction;247
31.3;2 Experiment Details;249
31.3.1;2.1 The Test Stand;249
31.3.2;2.2 Research Condition;249
31.4;3 Results and Discussion;250
31.5;4 Conclusions;254
31.6;Acknowledgements;255
31.7;References;255
32;Critical Failure Analysis of Lower Grinding Ring of Ball and Race Mill;256
32.1;Abstract;256
32.2;1 Introduction;256
32.3;2 Description of Lower Crushing Ring;258
32.4;3 Summary of Failures and Methodology;259
32.5;4 Results and Discussion;260
32.5.1;4.1 Chemical Composition;261
32.5.2;4.2 Microstructure Examination;262
32.5.3;4.3 Evaluation of Hardness;262
32.5.4;4.4 Analysis of Erection Process;262
32.5.5;4.5 Analysis of Operational Parameters;262
32.6;5 Conclusions;262
32.7;References;263
33;The Influence of the Application of EP Additive in the Minimum Quantity Cooling Lubrication Method on the Tool Wear and Surface Roughness in the Process of Turning316L Steel;264
33.1;Abstract;264
33.2;1 Introduction;265
33.3;2 Experimental Procedure;266
33.4;3 Experimental Results and Discussion;267
33.5;4 Conclusion;271
33.6;References;271
34;Time-Dependent Feed Force Modelling to Apply Feed Rate Strategies in the Drilling of Unsupported CFRP-Structures;274
34.1;Abstract;274
34.2;1 Introduction;274
34.2.1;1.1 Customized Feed Rate Strategies with Regard to the Clamping Situation;274
34.2.2;1.2 State of the Art in the Drilling of Flexible Composite Structures;275
34.2.3;1.3 Research Concept for the Application of Customized Feed Rate Strategies;277
34.3;2 Materials and Methods;277
34.3.1;2.1 Summary of Materials, Tools and Measurement Equipment;277
34.3.2;2.2 Description of the Mechanistic Modelling Approach;279
34.3.3;2.3 Determination of the Specific Feed Forces;281
34.4;3 Results and Discussion;283
34.4.1;3.1 Representation of the Threshold Area for Unsupported Drilling with M21/T800S;283
34.4.2;3.2 Evaluation of the Simulated Feed Forces and the Processing Time;284
34.4.3;3.3 Application of Feed Rate Strategies for Unsupported CFRP-Structures;286
34.5;4 Conclusions and Future Scope;288
34.6;References;289
35;Recognition of Assembly Parts by Convolutional Neural Networks;291
35.1;Abstract;291
35.2;1 Introduction to Augmented Reality and Deep Learning in Industrial Tasks;291
35.3;2 Assembly Used for Experiments and Teaching Data;292
35.4;3 Comparison of Standard Image Processing to CNN;293
35.4.1;3.1 Standard Image Processing Algorithm;293
35.4.2;3.2 Features and Part Detection by Deep Neural Networks;294
35.4.3;3.3 Comparison of Deep Neural Networks and Standard Image Processing;295
35.5;4 Implementation to Experimental Device (SW/HW);296
35.6;5 Experimental Results for Transfer Learning of Selected Models;297
35.7;6 Conclusion;298
35.8;Acknowledgement;298
35.9;References;298
36;The Use of Technology Local Heating by Laser for Turning of Difficult to Machine Materials;300
36.1;Abstract;300
36.2;1 Introduction;300
36.3;2 Machining with Preheating;300
36.3.1;2.1 Laser-Assisted Turning;301
36.3.2;2.2 Laser-Assisted Turning of Chromium Alloy;303
36.4;3 Proposal to Technology of Local Lase Heating for Machining;303
36.4.1;3.1 Describe of Existing Technological Process;303
36.4.2;3.2 Produced Part;304
36.4.3;3.3 Machines;304
36.4.4;3.4 Cutting Conditions;305
36.5;4 Technical and Economical Evaluation;306
36.6;5 Conclusion;307
36.7;Acknowledgement;308
36.8;References;308
37;Contributions to the Development of an Ontology in Logistics of Manufacturing;309
37.1;Abstract;309
37.2;1 Introduction;309
37.3;2 On the Ontology Aspects on Logistics Activities;311
37.4;3 Approach;312
37.5;4 Conclusions;315
37.6;References;315
38;Advanced Output Characteristics of Welding Power Source for Pulsed GMAW;317
38.1;Abstract;317
38.2;1 Introduction;317
38.3;2 Experimental Procedures;318
38.4;3 Results and Discussion;318
38.4.1;3.1 Standard Procedure to Determine Output Characteristic;318
38.4.2;3.2 Output Characteristics Obtained in Second Test;320
38.5;4 Conclusion;323
38.6;References;324
39;Investigation of the Effect of Johnson-Cook Constitutive Model Parameters on Results of the FEM Turning Simulation;325
39.1;Abstract;325
39.2;1 Introduction;325
39.3;2 Johnson-Cook Constitutive Model;326
39.4;3 Input Data;326
39.5;4 Simulation Results;327
39.6;5 Summary and Conclusions;331
39.7;References;332
40;Comparative Analysis of Surface Finishing for Different Cutting Strategies of Parts Made from POM C;334
40.1;Abstract;334
40.2;1 Introduction;334
40.3;2 Experimental Procedure;335
40.3.1;2.1 Experimental Design;335
40.3.2;2.2 Equipment and Measurements;336
40.4;3 Results and Discussions;337
40.4.1;3.1 Dimensional Accuracy;337
40.4.2;3.2 Shape Deviation;338
40.4.3;3.3 Surface Roughness;338
40.4.4;3.4 Surface Texture;340
40.5;4 Conclusions;341
40.6;Acknowledgment;341
40.7;References;342
41;Investigation of the Effect of Process Parameters on Surface Roughness in EDM Machining of ORVAR® Supreme Die Steel;343
41.1;Abstract;343
41.2;1 Introduction;343
41.3;2 Experimental Setup;344
41.4;3 Results and Discussion;345
41.5;4 Conclusions;348
41.6;References;349
42;The Influence of EP/AW Addition in the MQL Method on the Parameters of Surface Geometrical Structure in the Process of Turning 316L Steel;351
42.1;Abstract;351
42.2;1 Introduction;352
42.3;2 Experimental Procedure;353
42.4;3 Experimental Procedure;355
42.5;4 Conclusion;358
42.6;References;359
43;Change of the Substrate Surface After Removal Multiple Plasma Spraying Layers;361
43.1;Abstract;361
43.2;1 Introduction;361
43.3;2 Materials and Methods;363
43.3.1;2.1 Tested Materials;363
43.3.2;2.2 Experimental Conditions;363
43.4;3 Results and Discussion;366
43.4.1;3.1 Duralumin;366
43.4.2;3.2 Nickel;367
43.4.3;3.3 Chromium Steel;368
43.4.4;3.4 Hard Chrome;369
43.5;4 Conclusions;370
43.6;Acknowledgments;370
43.7;References;371
44;Tool Wear Measurement in Single Point Incremental Forming;372
44.1;Abstract;372
44.2;1 Introduction;372
44.3;2 Experimental Instigation;374
44.3.1;2.1 Forming Tool;374
44.3.2;2.2 Experiment;375
44.3.3;2.3 Tool Wear Measurement;375
44.4;3 Statistical Analysis;378
44.5;4 Result and Discussion;379
44.6;5 Conclusion;379
44.7;References;380
45;Materials;382
46;Increasing Compressor Wheel Fatigue Life Through Residual Stress Generation;383
46.1;Abstract;383
46.2;1 Introduction;383
46.3;2 Rotating Cylinder: Generating Residual Stress;384
46.3.1;2.1 Wheel ‘Autofrettage’ Process;384
46.3.2;2.2 Theoretical Model;384
46.3.3;2.3 Finite Element Analysis;386
46.3.4;2.4 Material Model Approximation;387
46.4;3 Wheel Analysis;388
46.4.1;3.1 Example Compressor Wheel;388
46.4.2;3.2 Finite Element Model;389
46.4.3;3.3 Residual Stress Generated;389
46.4.4;3.4 Impact of Residual Stress;391
46.5;4 Designing with Residual Stress;391
46.5.1;4.1 Approximate Theoretical Model;391
46.5.2;4.2 Theoretical Model as a Design Tool;392
46.6;5 Conclusions;393
46.7;References;393
47;Preliminary Study of Residual Stress Measurement Using Eddy Currents Phasor Angle;394
47.1;Abstract;394
47.2;1 Introduction;394
47.3;2 Experimental Methods;396
47.3.1;2.1 Experimental Technique;396
47.3.2;2.2 Experimental Procedure;397
47.4;3 Results;401
47.5;4 Conclusions;403
47.6;Acknowledgement;403
47.7;References;403
48;Forces and Process Dynamics in Profiling of AlCu4MgSi Aluminium Alloy;406
48.1;Abstract;406
48.2;1 Introduction;406
48.3;2 Experimental Procedure;407
48.4;3 Research Results;408
48.5;4 Conclusion;412
48.6;References;413
49;A Polyurethane/Carbon Black Composite Absorber for Low Frequency Waves;415
49.1;Abstract;415
49.2;1 Introduction;415
49.3;2 Material Characteristics and Experimental Setup;416
49.3.1;2.1 Pu/CB Pigment Coating;416
49.3.2;2.2 Contact Angle Measurements;416
49.3.3;2.3 Experimental Set-up;417
49.4;3 Results;419
49.5;4 Conclusion;419
49.6;References;420
50;The Effect of Additional Shielding Gas on Properties and Erosion Resistance of High Chromium Hardfacing;421
50.1;Abstract;421
50.2;1 Introduction;421
50.3;2 Experimental Procedure;422
50.4;3 Results and Discussion;423
50.5;4 Conclusions;427
50.6;References;428
51;Analysis of the Legal Risk in the Scientific Experiment of the Machining of Magnesium Alloys;429
51.1;Abstract;429
51.2;1 Introduction;429
51.3;2 Risk of Legal Liability in the Experiment;430
51.4;3 Challenges in Machining of Magnesium Alloys;432
51.5;4 Analysis of Legal Risk;433
51.6;5 Conclusions;437
51.7;References;437
52;Prediction of Tensile Failure Load for Maraging Steel Weldment by Acoustic Emission Technique;439
52.1;Abstract;439
52.2;1 Introduction;440
52.3;2 Experimental Test Set-Up;441
52.3.1;2.1 AE Testing and Data Acquisition;442
52.3.2;2.2 AE Amplitude Distribution;443
52.4;3 Results and Discussion;445
52.5;4 Conclusions;448
52.6;Acknowledgements;449
52.7;References;449
53;Measurements of the Friction Coefficient: Discussion on the Results in the Framework of the Time Series Analysis;451
53.1;Abstract;451
53.2;1 Introduction;451
53.3;2 Experimental Setup;452
53.4;3 Methods;453
53.5;4 Data Analysis and Results;456
53.6;5 Conclusion;461
53.7;References;462
54;Experimental Description of the Aging of the Coconut Shell Powder/Epoxy Composite;464
54.1;Abstract;464
54.2;1 Introduction;464
54.3;2 Materials and Methods;465
54.3.1;2.1 Filler and Matrix;465
54.3.2;2.2 Tensile Strength of Composite Systems;466
54.3.3;2.3 Tensile Shear Strength;466
54.3.4;2.4 Degradation;466
54.4;3 Results and Discussion;467
54.5;4 Conclusions;471
54.6;Acknowledgements;471
54.7;References;471
55;Fluid Film Pressure Description in Finite Turbulent Lubricated Journal Bearings by Using the Warner’s Theory;473
55.1;Abstract;473
55.2;1 Introduction;473
55.3;2 Theoretical Analysis;475
55.4;3 Results;479
55.5;4 Conclusions;481
55.6;References;482
56;Influence of Processing Parameters on Residual Stress in Injection Molded Parts;484
56.1;Abstract;484
56.2;1 Introduction;484
56.3;2 Simulation Research;485
56.4;3 Results and Discussion;488
56.5;4 Conclusions;491
56.6;References;491
57;Shape Memory Alloy (SMA) as a Potential Damper in Structural Vibration Control;493
57.1;Abstract;493
57.2;1 Introduction;493
57.3;2 Material and Method;494
57.4;3 Results and Discussion;497
57.5;4 Conclusions;498
57.6;Acknowledgement;499
57.7;References;499
58;Study of Cutting Tool Durability at a Short-Term Discontinuous Turning Test;501
58.1;Abstract;501
58.2;1 Introduction;501
58.3;2 Conditions of Experiments;503
58.4;3 Results and Discussion;505
58.5;4 Conclusion;508
58.6;Acknowledgement;508
58.7;References;508
59;Behavior of the Beam with a Lightweight Porous Structure in Its Core;510
59.1;Abstract;510
59.2;1 Introduction;510
59.3;2 State of the Art;511
59.4;3 Research Conditions;512
59.5;4 Results and Discussion;514
59.6;5 Conclusion;517
59.7;Acknowledgment;517
59.8;References;517
60;Advanced Preparation of the NC Programs with Usage of Strategy Manager;519
60.1;Abstract;519
60.2;1 Introduction;519
60.3;2 Optimization of the Machining Processes;520
60.4;3 Features and NC Strategies;520
60.5;4 Application;523
60.6;5 Conclusion;525
60.7;References;525
61;Modeling and Validation of Spindle Shaft Followed by Goal Driven Optimization;526
61.1;Abstract;526
61.2;1 Introduction;526
61.3;2 Spindle Bearing System;528
61.4;3 Mathematical Modeling for Spindle Shaft;530
61.4.1;3.1 Deflection of Spindle Axis Due to Bending;530
61.4.2;3.2 Deflection of Spindle Axis Due to Compliance of Spindle Supports;532
61.5;4 FEA Modeling and Validation of Mathematical Model;533
61.6;5 Goal Driven Optimization (GDO) of Spindle Shaft Design;534
61.7;6 Conclusions;537
61.8;References;538
62;Modeling and Simulation of Technological Factors in Bakery Industry;539
62.1;Abstract;539
62.2;1 Introduction;539
62.2.1;1.1 Bakery Industry;539
62.2.2;1.2 Distribution Channels Used in the Bakery Industry;541
62.3;2 Factors That Influence the Bakery Products Distribution;542
62.4;3 Conclusions;544
62.5;4 Research Directions;545
62.6;References;545
63;Numerical Study of Rapid Cooling of Injection Molds;547
63.1;Abstract;547
63.2;1 Introduction;547
63.3;2 Simulation Research;548
63.3.1;2.1 Physical Model;548
63.3.2;2.2 Governing Equations;549
63.3.3;2.3 Parameter Definitions;550
63.3.4;2.4 Boundary and Initial Conditions;550
63.4;3 Results and Discussion;551
63.5;4 Conclusions;553
63.6;References;554
64;Influence of Fill Imbalance on Pressure Drop in Injection Molding;556
64.1;Abstract;556
64.2;1 Introduction;556
64.3;2 Simulation Research;558
64.4;3 Results and Discussion;559
64.5;4 Conclusions;563
64.6;References;563
65;Assessment of the Production Reducer for Clamping the Drilling Tools;565
65.1;Abstract;565
65.2;1 Introduction;565
65.3;2 Select the Method of Production;566
65.3.1;2.1 Material of Thin-Walled Reducer for Clamping Mandrel;566
65.3.2;2.2 Technology of the Production of Thin-Walled Clamping Mandrel;567
65.3.3;2.3 Measurement of Co-axial Alignment of Cylindrical Surfaces;571
65.4;3 Discussion;573
65.5;4 Conclusion;573
65.6;Acknowledgements;573
65.7;References;573
66;Evaluation of Damage of Almandine Garnet Grains by N2 Adsorption Method;575
66.1;Abstract;575
66.2;1 Introduction;575
66.3;2 Experimental Method;576
66.4;3 Results and Discussion;576
66.4.1;3.1 Properties of Natural Garnets for AWJ Technology;576
66.4.2;3.2 N2 Adsorption and Desorption Isotherms;577
66.4.3;3.3 Pore Structure Calculated from BJH Model;579
66.5;4 Summary;581
66.6;Acknowledgement;581
66.7;References;582
67;Author Index;583



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.