E-Book, Englisch, Band 8401, 357 Seiten, eBook
Holzinger / Jurisica Interactive Knowledge Discovery and Data Mining in Biomedical Informatics
Erscheinungsjahr 2014
ISBN: 978-3-662-43968-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
State-of-the-Art and Future Challenges
E-Book, Englisch, Band 8401, 357 Seiten, eBook
Reihe: Lecture Notes in Computer Science
ISBN: 978-3-662-43968-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Knowledge Discovery and Data Mining in Biomedical Informatics: The Future Is in Integrative, Interactive Machine Learning Solutions.- Visual Data Mining: Effective Exploration of the Biological Universe.- Darwin or Lamarck? Future Challenges in Evolutionary Algorithms for Knowledge Discovery and Data Mining.- On the Generation of Point Cloud Data Sets: Step One in the Knowledge Discovery Process.- Adapted Features and Instance Selection for Improving Co-training.- Knowledge Discovery and Visualization of Clusters for Erythromycin Related Adverse Events in the FDA Drug Adverse Event Reporting System.- On Computationally-Enhanced Visual Analysis of Heterogeneous Data and Its Application in Biomedical Informatics.- A Policy-Based Cleansing and Integration Framework for Labour and Healthcare Data.- Interactive Data Exploration Using Pattern Mining.- Resources for Studying Statistical Analysis of Biomedical Data and R.- A Kernel-Based Framework for Medical Big-Data Analytics.- On Entropy-Based Data Mining.- Sparse Inverse Covariance Estimation for Graph Representation of Feature Structure.- Multi-touch Graph-Based Interaction for Knowledge Discovery on Mobile Devices: State-of-the-Art and Future Challenges.- Intelligent Integrative Knowledge Bases: Bridging Genomics, Integrative Biology and Translational Medicine.- Biomedical Text Mining: State-of-the-Art, Open Problems and Future Challenges.- Protecting Anonymity in Data-Driven Biomedical Science.- Biobanks – A Source of Large Biological Data Sets: Open Problems and Future Challenges.- On Topological Data Mining.