Holzinger / Weippl / Kieseberg | Machine Learning and Knowledge Extraction | Buch | 978-3-030-84059-4 | sack.de

Buch, Englisch, Band 12844, 365 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 569 g

Reihe: Lecture Notes in Computer Science

Holzinger / Weippl / Kieseberg

Machine Learning and Knowledge Extraction

5th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2021, Virtual Event, August 17-20, 2021, Proceedings
1. Auflage 2021
ISBN: 978-3-030-84059-4
Verlag: Springer International Publishing

5th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2021, Virtual Event, August 17-20, 2021, Proceedings

Buch, Englisch, Band 12844, 365 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 569 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-030-84059-4
Verlag: Springer International Publishing


This book constitutes the refereed proceedings of the 5th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2021, held in virtually in August 2021.

The 20 full papers and 2 short papers presented were carefully reviewed and selected from 48 submissions. The cross-domain integration and appraisal of different fields provides an atmosphere to foster different perspectives and opinions; it will offer a platform for novel ideas and a fresh look on the methodologies to put these ideas into business for the benefit of humanity.

Holzinger / Weippl / Kieseberg Machine Learning and Knowledge Extraction jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Digital Transformation for Sustainable Development Goals (SDGs) - a Security, Safety and Privacy Perspective on AI.- When in Doubt, Ask: Generating Answerable and Unanswerable Questions, Unsupervised.- Self-Propagating Malware Containment via Reinforcement Learning.- Text2PyCode: Machine Translation of Natural Language Intent to Python Source Code.- Automated Short Answer Grading using Deep Learning: A Survey.- Fair and Adequate Explanations.- Mining Causal Hypotheses in Categorical Time Series by Iterating on Binary Correlations.- Active Finite Reward Automaton Inference and Reinforcement Learning Using Queries and Counterexamples.- Rice seed image-to-image translation using Generative Adversarial Networks to improve weedy rice image classification.- Reliable AI through SVDD and rule extraction.- Airbnb Price Prediction Using Machine Learning and Sentiment Analysis.- Towards Financial Sentiment Analysis in a South African Landscape.- Decisions are not all equal. Introducing a utility metric based on the case-wise raters' perceptions.- Deep Convolutional Neural Network(CNN) design for pathology detection of COVID-19 in chest X-Ray Images.- Anomaly detection for skin lesion images using replicator neural networks.- On the overlap between Grad-CAM saliency maps and explainable visual features in skin cancer images.- From Explainable to Reliable Artificial Intelligence.- Explanatory Pluralism in Explainable AI.- On the Trustworthiness of Tree Ensemble Explainability Methods.- Human-in-the-loop model explanation via verbatim boundary identification in generated neighborhoods.- MAIRE - A Model-Agnostic Interpretable Rule Extraction Procedure for Explaining Classifiers.- Transparent Ensembles for Covid-19 Prognosis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.