• Neu
Hou / Fu / Hu | Intelligent Robotics | E-Book | sack.de
E-Book

E-Book, Englisch, Band 2355, 418 Seiten, eBook

Reihe: Communications in Computer and Information Science

Hou / Fu / Hu Intelligent Robotics

5th China Annual Conference, CIRAC 2024, Dalian, China, September 20–22, 2024, Proceedings
Erscheinungsjahr 2025
ISBN: 978-981-961614-5
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

5th China Annual Conference, CIRAC 2024, Dalian, China, September 20–22, 2024, Proceedings

E-Book, Englisch, Band 2355, 418 Seiten, eBook

Reihe: Communications in Computer and Information Science

ISBN: 978-981-961614-5
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book constitutes selected papers presented during the 5th China Annual Intelligent Robotics Conference, CIRAC 2024, held in Dalian, China, in September 2024. The 28 full papers presented in this volume were carefully reviewed and selected from 96 submissions. They are grouped into the following topics: Deep Learning Architecture; Low-Level Vision; Multi-modal learning; Pattern Recognition; Robotics; and Signal processing.
Hou / Fu / Hu Intelligent Robotics jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Deep Learning Architecture.
.- Average Merging and Prompting Training for Policy Generalization.
.- A Recommender System for Mining Personalized User Preferences.
.- An Automatic Hyperparameter Optimization Method for An Improved DQN.
.- SINR Analysis of Cell-Free Massive MIMO Systems Assisted by Intelligent Reflecting Surface.
.- Bearing Fault Diagnosis with Small Samples Based on Multi-Scale Convolutional Kernels Attention Network..- Low-Level Vision.
.- SF-SARnet: Custom SAR Image Generation for Specific Locations.
.- Underwater Light Mask Transformer for Underwater Image Enhancement.
.- Improvement and Application of Multi-type Image Enhancement Algorithms..- Multi-modal learning.
.- Ordinal and Position Enhance the Framework of the Multimodal Dialogue System.
.- A Two-Stage Approach for Multimodal Emotion Cause Pair Extraction Based on Large Language Models.
.- Hierarchical Language-Conditioned Robot Learning with Vision-Language Models..- Pattern Recognition.
.- Research on Seafood Traceability System Based on Blockchain.
.- Exploring the Improvement of Detection Networks through Multilevel Filter Modules.
.- DeepMHT: Moving Object Segmentation in the Point Cloud Based on Deep Learning and Multiple Hypothesis Tracking.
.- Underwater Salient Object Detection Based on Swintransformer.
.- Optimizing Gesture Recognition for Real-Time Mouse Control with MEG-YOLOv5 .
.- LGFNet: A Remote Sensing Change Detection Network with Local-Global Semantic Feature Fusion..- Robotics.
.- A Deep Reinforcement Learning Method with Adaptive Heuristic Function Improvement for Mobile Robot Nav-igation in Substation Environment.
.- Multi-Robot Task Allocation and Path Planning Method Based on Improved Genetic Algorithm and Conflict-Based Search.
.- An Integrated Solution to Improve the Environment Awareness and Path Planning Efficiency of Smart Wheelchairs.
.- Learning-based Traversability Costmap for Autonomous Off-road Navigation.
.- Complex Environment-based Multiagent Swarm Cooperative Encirclement of Unmanned Surface Vehicle Clusters.
.- Fusion of DDPG and Particle Swarm Optimization for UAV Path Planning.
.- Highly Adaptive Dual-Robot Collaborative Embodied Intelligence Grasping System.
.- Modified TD3 Reinforcement Learning-Based Path Following Control for an Autonomous Underwater Vehicle·
.- Enhancing Crowdsourcing Data Accuracy for Robot Training via Confidence Learning and GNN..- Signal processing.
.- SER Analysis of Cell-Free Massive MIMO System under Perfect CSI.
.- Phase Difference Ranging Study based on MF R-Mode Signals.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.