Buch, Englisch, 71 Seiten, Format (B × H): 173 mm x 246 mm, Gewicht: 333 g
Reihe: Synthesis Lectures on Learning, Networks, and Algorithms
Buch, Englisch, 71 Seiten, Format (B × H): 173 mm x 246 mm, Gewicht: 333 g
Reihe: Synthesis Lectures on Learning, Networks, and Algorithms
ISBN: 978-3-031-31596-1
Verlag: Springer International Publishing
This book introduces the Learning-Augmented Network Optimization (LANO) paradigm, which interconnects network optimization with the emerging AI theory and algorithms and has been receiving a growing attention in network research. The authors present the topic based on a general stochastic network optimization model, and review several important theoretical tools that are widely adopted in network research, including convex optimization, the drift method, and mean-field analysis. The book then covers several popular learning-based methods, i.e., learning-augmented drift, multi-armed bandit and reinforcement learning, along with applications in networks where the techniques have been successfully applied. The authors also provide a discussion on potential future directions and challenges.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik
- Mathematik | Informatik Mathematik Stochastik Stochastische Prozesse
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik EDV & Informatik Allgemein
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Optimierung
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik EDV | Informatik Angewandte Informatik
Weitere Infos & Material
Introduction.- The Stochastic Network Model.- Network Optimization Techniques.- Learning Network Decisions.- Summary and Discussions.