Huang | Learning for Decision and Control in Stochastic Networks | E-Book | sack.de
E-Book

E-Book, Englisch, 71 Seiten, eBook

Reihe: Synthesis Lectures on Learning, Networks, and Algorithms

Huang Learning for Decision and Control in Stochastic Networks


1. Auflage 2023
ISBN: 978-3-031-31597-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 71 Seiten, eBook

Reihe: Synthesis Lectures on Learning, Networks, and Algorithms

ISBN: 978-3-031-31597-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book introduces the Learning-Augmented Network Optimization (LANO) paradigm, which interconnects network optimization with the emerging AI theory and algorithms and has been receiving a growing attention in network research. The authors present the topic based on a general stochastic network optimization model, and review several important theoretical tools that are widely adopted in network research, including convex optimization, the drift method, and mean-field analysis. The book then covers several popular learning-based methods, i.e., learning-augmented drift, multi-armed bandit and reinforcement learning, along with applications in networks where the techniques have been successfully applied. The authors also provide a discussion on potential future directions and challenges.

Huang Learning for Decision and Control in Stochastic Networks jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


Introduction.- The Stochastic Network Model.- Network Optimization Techniques.- Learning Network Decisions.- Summary and Discussions.


Longbo Huang, Ph.D. is an Associate Professor at the Institute for Interdisciplinary Information Sciences (IIIS) at Tsinghua University, Beijing, China. He received his Ph.D. in EE from the University of Southern California, and then worked as a postdoctoral researcher in the EECS dept. at University of California at Berkeley before joining IIIS. Dr. Huang previously held visiting positions at the LIDS lab at MIT, the Chinese University of Hong Kong, Bell-labs France, and Microsoft Research Asia (MSRA). He was also a visiting scientist at the Simons Institute for the Theory of Computing at UC Berkeley in Fall 2016. Dr. Huang’s research focuses on decision intelligence (AI for decisions), including deep reinforcement learning, online learning and reinforcement learning, learning-augmented network optimization, distributed optimization and machine learning.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.