Iliadis / Jayne / Papaleonidas | Artificial Neural Networks and Machine Learning - ICANN 2023 | Buch | 978-3-031-44191-2 | sack.de

Buch, Englisch, Band 14258, 589 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 937 g

Reihe: Lecture Notes in Computer Science

Iliadis / Jayne / Papaleonidas

Artificial Neural Networks and Machine Learning - ICANN 2023

32nd International Conference on Artificial Neural Networks, Heraklion, Crete, Greece, September 26-29, 2023, Proceedings, Part V
1. Auflage 2023
ISBN: 978-3-031-44191-2
Verlag: Springer Nature Switzerland

32nd International Conference on Artificial Neural Networks, Heraklion, Crete, Greece, September 26-29, 2023, Proceedings, Part V

Buch, Englisch, Band 14258, 589 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 937 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-44191-2
Verlag: Springer Nature Switzerland


The 10-volume set LNCS 14254-14263 constitutes the proceedings of the 32nd International Conference on Artificial Neural Networks and Machine Learning, ICANN 2023, which took place in Heraklion, Crete, Greece, during September 26–29, 2023.

The 426 full papers, 9 short papers and 9 abstract papers included in these proceedings were carefully reviewed and selected from 947 submissions. ICANN is a dual-track conference, featuring tracks in brain inspired computing on the one hand, and machine learning on the other, with strong cross-disciplinary interactions and applications.

Iliadis / Jayne / Papaleonidas Artificial Neural Networks and Machine Learning - ICANN 2023 jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


A Multi-Task Instruction with Chain of Thought Prompting Generative Framework for Few-Shot Named Entity Recognition.- ANODE-GAN: Incomplete Time Series Imputation by Augmented Neural ODE-based Generative Adversarial Networks.- Boosting Adversarial Transferability through Intermediate Feature.- DaCon: Multi-Domain Text Classification Using Domain Adversarial Contrastive Learning.- Exploring the Role of Recursive Convolutional Layer in Generative Adversarial Networks.- GC-GAN: Photo Cartoonization using Guided Cartoon Generative Adversarial Network.- Generating Distinctive Facial Images from Natural Language Descriptions via Spatial Map Fusion.- Generative Event Extraction via Internal Knowledge-enhanced Prompt Learning.- Improved attention mechanism and adversarial training for respiratory infectious disease text named entity recognition.- Low-frequency Features Optimization for Transferability Enhancement in Radar Target Adversarial Attack.- Multi-Convolution and Adaptive-stride Based Transferable Adversarial Attacks.- Multi-Source Open-Set Image Classification based on Deep Adversarial Domain Adaptation.- SAL: Salient Adversarial Attack with LRP Refinement.- Towards background and foreground color robustness with adversarial right for the right reasons.- Towards Robustness of Large Language Models on Text-to-SQL Task: An Adversarial and Cross-Domain Investigation.- TransNoise: Transferable Universal Adversarial Noise for Adversarial Attack.- A spatial interpolation method based on meta-learning with spatial weighted neural networks.- Adapted Methods for GAN Vocoders via Skip-Connections ISTFT and Cooperative Structure.- An Efficient Approximation Method Based on Enhanced Physics-informed Neural Networks for Solving Localized Wave Solutions of PDEs.- Causal Interpretability and Uncertainty Estimation in Mixture Density Networks.- Connectionist Temporal Sequence Decoding: M-ary Hopfield Neural-network with Multi-limit cycle Formulation.- Explaining, Evaluating and Enhancing Neural Networks' Learned Representations.- Gated Variable Selection Neural Network for Multimodal Sleep Quality Assessment.- Generalized Thermostatistics and the Nonequilibrium Landscape Description of Neural Network Dynamics.- Guiding the Comparison of Neural Network Local Robustness: An Empirical Study.- Information-Theoretically Secure Neural Network Training with Flexible Deployment.- LRP-GUS: A visual based data reduction algorithm for Neural Networks.- Mining and Injecting Legal Prior Knowledge to Improve the Generalization Ability of Neural Networks in Chinese Judgments.- Mixed-mode response of Nigral Dopaminergic neurons: an in silico study on SpiNNaker.- Pan-Sharpening with Global Multi-Scale Context Network.- Population Coding Can Greatly Improve Performance of Neural Networks: A Comparison.- Population CodingCan Greatly Improve Performance of Neural Networks: A Comparison.- QuasiNet: a neural network with trainable product layers.- Razor SNN: Efficient Spiking Neural Network with Temporal Embeddings.- Real-time Adaptive Physical Sensor Processing with SNN Hardware.- Regularization for Hybrid N-Bit Weight Quantization of Neural Networks on Ultra-Low Power Microcontrollers.- SGNN: A new method for learning representations on signed networks.- SkaNet: Split Kernel Attention Network.- Syntax-Aware Complex-Valued Neural Machine Translation.- Traffic Flow Prediction Based on Multi-Type Characteristic Hybrid Graph Neural Network.- Whisker Analysis Framework for Unrestricted Mice with Neural Networks.- Adaptive Segmentation Network for Scene Text Detection.- How to Extract and Interact? Nested Siamese Text Matching with Interaction and Extraction.- Label-guided Graphormer for Hierarchy Text Classification.- Text Semantic Matching Research Based on Parallel Dropout.- Towards Better Core Elements Extraction for Customer Service Dialogue Text.- UIT: Unifying Pre-Training Objectives for Image-Text Understanding.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.