Ishikawa / He / Xu | Advanced Web and Network Technologies, and Applications | Buch | 978-3-540-89375-2 | sack.de

Buch, Englisch, Band 4977, 247 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 400 g

Reihe: Lecture Notes in Computer Science

Ishikawa / He / Xu

Advanced Web and Network Technologies, and Applications

APWeb 2008 International Workshops: BIDM, IWHDM, and DeWeb Shenyang, China, April 26-28, 2008, Shenyang, China Revised Papers
2008
ISBN: 978-3-540-89375-2
Verlag: Springer Berlin Heidelberg

APWeb 2008 International Workshops: BIDM, IWHDM, and DeWeb Shenyang, China, April 26-28, 2008, Shenyang, China Revised Papers

Buch, Englisch, Band 4977, 247 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 400 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-540-89375-2
Verlag: Springer Berlin Heidelberg


This book constitutes the thoroughly refereed joint post-workshop proceedings of three international workshops held in conjunction with the 10th Asia-Pacific Web Conference, APWeb 2008, in Shenyang, China, in April 2008 (see LNCS 4976).

The 15 revised full papers presented together with 4 invited papers and 4 keynote lectures were carefully reviewed and selected from numerous submissions. Topics addressed by the workshops are business intelligence and data mining (BIDM 2008), health data management (IWHDM 2008), and data engineering and Web technology research (DeWeb 2008). The papers focus on issues such as Web searching, Web services, database, data mining, bioinformatics, and business intelligence.

Ishikawa / He / Xu Advanced Web and Network Technologies, and Applications jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


The First Workshop on Business Intelligence and Data Mining.- Moving Objects Databases Based on Dynamic Transportation Networks: Modeling, Indexing, and Implementation.- Approach to Detection of Community’s Consensus and Interest.- A Comparative Empirical Study on the Margin Setting of Stock Index Futures Calendar Spread Trading.- A Study on Multi-word Extraction from Chinese Documents.- Extracting Information from Semi-structured Web Documents: A Framework.- Discovering Interesting Classification Rules with Particle Swarm Algorithm.- International Workshop on Health Data Management.- Improving the Use, Analysis and Integration of Patient Health Data.- DM-Based Medical Solution and Application.- Learning-Function-Augmented Inferences of Causalities Implied in Health Data.- Support Vector Machine for Outlier Detection in Breast Cancer Survivability Prediction.- An Empirical Study of Combined Classifiers for Knowledge Discovery on Medical Data Bases.- Tracing the Application of Clinical Guidelines.- Doctoral Consortium on Data Engineering and Web Technology Research.- The Research on the Algorithms of Keyword Search in Relational Database.- An Approach to Monitor Scenario-Based Temporal Properties in Web Service Compositions.- Efficient Authentication and Authorization Infrastructure for Mobile Users.- An Effective Feature Selection Method Using the Contribution Likelihood Ratio of Attributes for Classification.- Unsupervised Text Learning Based on Context Mixture Model with Dirichlet Prior.- The Knowledge Discovery Research on User’s Mobility of Communication Service Provider.- Protecting Information Sharing in Distributed Collaborative Environment.- Relevance Feedback Learning for Web Image Retrieval Using Soft Support Vector Machine.- Feature Matrix Extraction andClassification of XML Pages.- Tuning the Cardinality of Skyline.- An HMM Approach to Anonymity Analysis of Continuous Mixes.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.