Jabbar / Tiwari / Bano Rehman | Applied Machine Learning and Data Analytics | Buch | 978-3-031-55485-8 | sack.de

Buch, Englisch, Band 2047, 276 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 441 g

Reihe: Communications in Computer and Information Science

Jabbar / Tiwari / Bano Rehman

Applied Machine Learning and Data Analytics

6th International Conference, AMLDA 2023, Lübeck, Germany, November 9-10, 2023, Revised Selected Papers
2024
ISBN: 978-3-031-55485-8
Verlag: Springer International Publishing

6th International Conference, AMLDA 2023, Lübeck, Germany, November 9-10, 2023, Revised Selected Papers

Buch, Englisch, Band 2047, 276 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 441 g

Reihe: Communications in Computer and Information Science

ISBN: 978-3-031-55485-8
Verlag: Springer International Publishing


This book constitutes the refereed conference proceedings of the 6th International Conference on Applied Machine Learning and Data Analytics, AMLDA 2023, held in Lübeck, Germany, during November 9–10, 2023.

The 17 full papers and 2 short papers presented in this book were carefully reviewed and selected from 76 submissions. The main conference AMLDA 2023 is renowned for presenting cutting-edge research on all aspects of machine learning as well as important application areas such as healthcare and medical imaging informatics, biometrics, forensics, precision agriculture, risk management, robotics, and satellite imaging.

Jabbar / Tiwari / Bano Rehman Applied Machine Learning and Data Analytics jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Get it right: Improving Comprehensibility with adaptable Speech Expression of a Humanoid Service Robot.- Process Selection for RPA Projects with MDCM: The Case of Izmir Bakircay University.- The Metaverse: A Multidisciplinary Perspective on the Future of Human Interaction.- Blockchain- A Secure And Transparent Solution to Detect Counterfeit Products.- Data-Driven Approach to Network Intrusion Detection System using Modified Artificial Bee Colony Algorithm for Nature-Inspired Cybersecurity.- Forecasting User Payment Behavior using Machine Learning.- An Efficient Image Dehazing Technique using DSRGAN & VGG19.- Benchmarking Machine Learning and Deep Learning Models for Mango Leaf Disease Detection: A Comparative Analysis.- Cassava Syndrome Scan A Pioneering Deep Learning System for Accurate Cassava Leaf Disease Classification.- Aspect-Based Sentiment Classification Framework for Laptop Reviews Using Hybrid Lexicon-Machine Learning Approach.- DESI: Diversification of E-commerce recommendations using Semantic Intelligence.- Adaptive Neuro Fuzzy-Based Depression Detection Model for Students in Tertiary Education.- Optimizing Portfolio for Highly Funded Industries within Budget Constraints for the Period of 2023-2024.- AI Insights: Unleashing Financial Distress Signals.- Intensity-Chromaticity-Luminance (ICL) based Technique for Face Spoofing Detection.- Developers’ Perspective on Trustworthiness of Code Generated by ChatGPT: Insights from Interviews.- Sentiment Analysis of Monkeypox Tweets in Latin America.- Stock Market Prediction with Artificial Intelligence Techniques.- Self-regulated and Participation-driven Text Simplification – The Impact of the Forthcoming AI Regulation on NLM-generated Accessibility-enhanced Communication.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.