Buch, Englisch, Band 79, 218 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 518 g
Buch, Englisch, Band 79, 218 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 518 g
Reihe: Studies in Computational Intelligence
ISBN: 978-3-540-75383-4
Verlag: Springer Berlin Heidelberg
In a rapidly evolving world of knowledge and technology, do you ever wonder how hydrology is catching up? This book takes the angle of computational hydrology and envisions one of the future directions, namely, quantitative integration of high-quality hydrologic field data with geologic, hydrologic, chemical, atmospheric, and biological information to characterize and predict natural systems in hydrological sciences.
Intelligent computation and information fusion are the key words. The aim is to provide both established scientists and graduate students with a summary of recent developments in this topic. The chapters of this edited volume cover some of the most important ingredients for quantitative hydrological information fusion, including data fusion techniques, interactive computational environments, and supporting mathematical and numerical methods. Real-life applications of hydrological information fusion are also addressed.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Geowissenschaften Geologie Geotechnik
- Geowissenschaften Geologie Hydrologie, Hydrogeologie
- Technische Wissenschaften Bauingenieurwesen Boden- und Felsmechanik, Geotechnik
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
- Geowissenschaften Geologie Limnologie (Süßwasser)
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
Weitere Infos & Material
Data Fusion Methods for Integrating Data-driven Hydrological Models.- A New Paradigm for Groundwater Modeling.- Information Fusion using the Kalman Filter based on Karhunen-Loève Decomposition.- Trajectory-Based Methods for Modeling and Characterization.- The Role of Streamline Models for Dynamic Data Assimilation in Petroleum Engineering and Hydrogeology.- Information Fusion in Regularized Inversion of Tomographic Pumping Tests.- Advancing the Use of Satellite Rainfall Datasets for Flood Prediction in Ungauged Basins: The Role of Scale, Hydrologic Process Controls and the Global Precipitation Measurement Mission.- Integrated Methods for Urban Groundwater Management Considering Subsurface Heterogeneity.