Keydana | Deep Learning and Scientific Computing with R torch | Buch | 978-1-032-23138-9 | sack.de

Buch, Englisch, 414 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 784 g

Reihe: Chapman & Hall/CRC The R Series

Keydana

Deep Learning and Scientific Computing with R torch


1. Auflage 2023
ISBN: 978-1-032-23138-9
Verlag: Chapman and Hall/CRC

Buch, Englisch, 414 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 784 g

Reihe: Chapman & Hall/CRC The R Series

ISBN: 978-1-032-23138-9
Verlag: Chapman and Hall/CRC


torch is an R port of PyTorch, one of the two most-employed deep learning frameworks in industry and research. It is also an excellent tool to use in scientific computations. It is written entirely in R and C/C++.

Though still "young" as a project, R torch already has a vibrant community of users and developers. Experience shows that torch users come from a broad range of different backgrounds. This book aims to be useful to (almost) everyone. Globally speaking, its purposes are threefold:

- Provide a thorough introduction to torch basics – both by carefully explaining underlying concepts and ideas, and showing enough examples for the reader to become "fluent" in torch

- Again with a focus on conceptual explanation, show how to use torch in deep-learning applications, ranging from image recognition over time series prediction to audio classification

- Provide a concepts-first, reader-friendly introduction to selected scientific-computation topics (namely, matrix computations, the Discrete Fourier Transform, and wavelets), all accompanied by torch code you can play with.

Deep Learning and Scientific Computing with R torch is written with first-hand technical expertise and in an engaging, fun-to-read way.

Keydana Deep Learning and Scientific Computing with R torch jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Part 1. Getting familiar with torch 1. Overview 2. On torch, and how to get it 3. Tensors 4. Autograd 5. Function minimization with autograd 6. A neural network from scratch 7. Modules 8. Optimizers 9. Loss functions 10. Function minimization with L-BFGS 11. Modularizing the neural network Part 2. Deep learning with torch 12. Overview 13. Loading data 14. Training with luz 15. A first go at image classification 16. Making models generalize 17. Speeding up training 18. Image classification, take two: Improving performance 19. Image segmentation 20. Tabular data 21. Time series 22. Audio classification Part 3. Other things to do with torch: Matrices, Fourier Transform, and Wavelets 23. Overview 24. Matrix computations: Least-squares problems 25. Matrix computations: Convolution 26. Exploring the Discrete Fourier Transform (DFT) 27. The Fast Fourier Transform (FFT) 28. Wavelets


Sigrid Keydana is an Applied Researcher at Posit (formerly RStudio, PBC). She has a background in the humanities, psychology, and information technology, and is passionate about explaining complex concepts in a concepts-first, comprehensible way.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.