E-Book, Englisch, 411 Seiten, eBook
Reihe: Natural Computing Series
Knowles / Corne / Deb Multiobjective Problem Solving from Nature
1. Auflage 2007
ISBN: 978-3-540-72964-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
From Concepts to Applications
E-Book, Englisch, 411 Seiten, eBook
Reihe: Natural Computing Series
ISBN: 978-3-540-72964-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Weitere Infos & Material
Introduction: Problem Solving, EC and EMO.- Introduction: Problem Solving, EC and EMO.- Exploiting Multiple Objectives: From Problems to Solutions.- Multiobjective Optimization and Coevolution.- Constrained Optimization via Multiobjective Evolutionary Algorithms.- Tackling Dynamic Problems with Multiobjective Evolutionary Algorithms.- Computational Studies of Peptide and Protein Structure Prediction Problems via Multiobjective Evolutionary Algorithms.- Can Single-Objective Optimization Profit from Multiobjective Optimization?.- Modes of Problem Solving with Multiple Objectives: Implications for Interpreting the Pareto Set and for Decision Making.- Machine Learning with Multiple Objectives.- Multiobjective Supervised Learning.- Reducing Bloat in GP with Multiple Objectives.- Multiobjective GP for Human-Understandable Models: A Practical Application.- Multiobjective Classification Rule Mining.- Multiple Objectives in Design and Engineering.- Innovization: Discovery of Innovative Design Principles Through Multiobjective Evolutionary Optimization.- User-Centric Evolutionary Computing: Melding Human and Machine Capability to Satisfy Multiple Criteria.- Multi-competence Cybernetics: The Study of Multiobjective Artificial Systems and Multi-fitness Natural Systems.- Scaling up Multiobjective Optimization.- Fitness Assignment Methods for Many-Objective Problems.- Modeling Regularity to Improve Scalability of Model-Based Multiobjective Optimization Algorithms.- Objective Set Compression.- On Handling a Large Number of Objectives A Posteriori and During Optimization.