Kohavi / Srivastava / Masand | WEBKDD 2001 - Mining Web Log Data Across All Customers Touch Points | Buch | 978-3-540-43969-1 | sack.de

Buch, Englisch, 166 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 289 g

Reihe: Lecture Notes in Artificial Intelligence

Kohavi / Srivastava / Masand

WEBKDD 2001 - Mining Web Log Data Across All Customers Touch Points

Third International Workshop, San Francisco, CA, USA, August 26, 2001, Revised Papers
2002
ISBN: 978-3-540-43969-1
Verlag: Springer Berlin Heidelberg

Third International Workshop, San Francisco, CA, USA, August 26, 2001, Revised Papers

Buch, Englisch, 166 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 289 g

Reihe: Lecture Notes in Artificial Intelligence

ISBN: 978-3-540-43969-1
Verlag: Springer Berlin Heidelberg


WorkshopTheme The ease and speed with which business transactions can be carried out over the Web has been a key driving force in the rapid growth of electronic commerce. In addition, customer interactions, including personalized content, e-mail c- paigns, and online feedback provide new channels of communication that were not previously available or were very ine?cient. The Web presents a key driving force in the rapid growth of electronic c- merceandanewchannelforcontentproviders.Knowledgeaboutthecustomeris fundamental for the establishment of viable e-commerce solutions. Rich web logs provide companies with data about their customers and prospective customers, allowing micro-segmentation and personalized interactions. Customer acqui- tion costs in the hundreds of dollars per customer are common, justifying heavy emphasis on correct targeting. Once customers are acquired, customer retention becomes the target. Retention through customer satisfaction and loyalty can be greatly improved by acquiring and exploiting knowledge about these customers and their needs. Althoughweblogsarethesourceforvaluableknowledgepatterns,oneshould keep in mind that the Web is only one of the interaction channels between a company and its customers. Data obtained from conventional channels provide invaluable knowledge on existing market segments, while mobile communication adds further customer groups. In response, companies are beginning to integrate multiple sources of data including web, wireless, call centers, and brick-a- mortar store data into a single data warehouse that provides a multifaceted view of their customers, their preferences, interests, and expectations.
Kohavi / Srivastava / Masand WEBKDD 2001 - Mining Web Log Data Across All Customers Touch Points jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Detail and Context in Web Usage Mining: Coarsening and Visualizing Sequences.- A Customer Purchase Incidence Model Applied to Recommender Services.- A Cube Model and Cluster Analysis for Web Access Sessions.- Exploiting Web Log Mining for Web Cache Enhancement.- LOGML: Log Markup Language for Web Usage Mining.- A Framework for Efficient and Anonymous Web Usage Mining Based on Client-Side Tracking.- Mining Indirect Associations in Web Data.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.