Buch, Englisch, 279 Seiten, Book w. online files / update, Format (B × H): 160 mm x 241 mm, Gewicht: 678 g
Numerical Recipes and Practical Applications
Buch, Englisch, 279 Seiten, Book w. online files / update, Format (B × H): 160 mm x 241 mm, Gewicht: 678 g
Reihe: Machine Intelligence for Materials Science
ISBN: 978-3-031-44621-4
Verlag: Springer International Publishing
Focusing on the fundamentals of machine learning, this book covers broad areas of data-driven modeling, ranging from simple regression to advanced machine learning and optimization methods for applications in materials modeling and discovery. The book explains complex mathematical concepts in a lucid manner to ensure that readers from different materials domains are able to use these techniques successfully. A unique feature of this book is its hands-on aspect—each method presented herein is accompanied by a code that implements the method in open-source platforms such as Python. This book is thus aimed at graduate students, researchers, and engineers to enable the use of data-driven methods for understanding and accelerating the discovery of novel materials.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Keramik, Glas, Sonstige Werkstoffe
- Naturwissenschaften Physik Angewandte Physik Soziophysik, Wirtschaftsphysik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
Weitere Infos & Material
Part I: Introduction.- Part II: Basics of Machine Learning Methods.- Introduction to Data-Based Modeling.- Model Development.- Introduction to Machine Learning.- Quick Dive into Probabilistic Methods.- Optimization.- Part III: Application in Glass Science.- Property Prediction.- Glass Discovery.- Understanding Glass Physics.- Atomistic Modeling.- Future Directions.