Lavielle | Mixed Effects Models for the Population Approach | Buch | 978-1-4822-2650-8 | sack.de

Buch, Englisch, 384 Seiten, Format (B × H): 159 mm x 241 mm, Gewicht: 653 g

Reihe: Chapman & Hall/CRC Biostatistics Series

Lavielle

Mixed Effects Models for the Population Approach

Models, Tasks, Methods and Tools
1. Auflage 2014
ISBN: 978-1-4822-2650-8
Verlag: CRC Press

Models, Tasks, Methods and Tools

Buch, Englisch, 384 Seiten, Format (B × H): 159 mm x 241 mm, Gewicht: 653 g

Reihe: Chapman & Hall/CRC Biostatistics Series

ISBN: 978-1-4822-2650-8
Verlag: CRC Press


Wide-Ranging Coverage of Parametric Modeling in Linear and Nonlinear Mixed Effects Models

Mixed Effects Models for the Population Approach: Models, Tasks, Methods and Tools presents a rigorous framework for describing, implementing, and using mixed effects models. With these models, readers can perform parameter estimation and modeling across a whole population of individuals at the same time.

Easy-to-Use Techniques and Tools for Real-World Data Modeling

The book first shows how the framework allows model representation for different data types, including continuous, categorical, count, and time-to-event data. This leads to the use of generic methods, such as the stochastic approximation of the EM algorithm (SAEM), for modeling these diverse data types. The book also covers other essential methods, including Markov chain Monte Carlo (MCMC) and importance sampling techniques. The author uses publicly available software tools to illustrate modeling tasks. Methods are implemented in Monolix, and models are visually explored using Mlxplore and simulated using Simulx.

Careful Balance of Mathematical Representation and Practical Implementation

This book takes readers through the whole modeling process, from defining/creating a parametric model to performing tasks on the model using various mathematical methods. Statisticians and mathematicians will appreciate the rigorous representation of the models and theoretical properties of the methods while modelers will welcome the practical capabilities of the tools. The book is also useful for training and teaching in any field where population modeling occurs.

Lavielle Mixed Effects Models for the Population Approach jetzt bestellen!

Zielgruppe


Statisticians and biostatisticians working in biology, particularly pharmacology, PK/PD modeling, and population modeling; statisticians, mathematicians, and modelers in the pharmaceutical industry.


Autoren/Hrsg.


Weitere Infos & Material


Introduction and Preliminary Concepts: Overview. Mixed Effects Models vs Hierarchical Models. What Is a Model? A Joint Probability Distribution! Defining Models: Modeling Observations. Modeling the Individual Parameters. Extensions. Using Models: Tasks and Methods. Examples. Algorithms. Appendices: The Individual Approach. Some Useful Results. Introduction to Pharmacokinetics Modeling. Tools. Bibliography. Glossary. Index.


Marc Lavielle is a statistician specializing in computational statistics and healthcare applications. He holds a Ph.D. in statistics from University Paris-Sud, Orsay. He was named professor at Paris Descartes University and joined Inria as research director in 2007. Creator of the Monolix software, he led the Monolix software development project at Inria between 2009 and 2011. He created the CNRS Research Group "Statistics and Health" in 2007. Since 2009, Dr. Lavielle has been a member of the French High Council of Biotechnologies, where he promotes the use of sound statistical methods to evaluate health and environmental risks related to genetically modified organisms (GMOs).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.