Learning and Decision-Making from Rank Data | Buch | 978-1-68173-442-2 | sack.de

Buch, Englisch, 159 Seiten, Hardback, Format (B × H): 190 mm x 235 mm

Reihe: Synthesis Lectures on Artificial Intelligence and Machine Learning

Learning and Decision-Making from Rank Data


Erscheinungsjahr 2019
ISBN: 978-1-68173-442-2
Verlag: Morgan & Claypool Publishers

Buch, Englisch, 159 Seiten, Hardback, Format (B × H): 190 mm x 235 mm

Reihe: Synthesis Lectures on Artificial Intelligence and Machine Learning

ISBN: 978-1-68173-442-2
Verlag: Morgan & Claypool Publishers


The ubiquitous challenge of learning and decision-making from rank data arises in situations where intelligent systems collect preference and behavior data from humans, learn from the data, and then use the data to help humans make efficient, effective, and timely decisions. Often, such data are represented by rankings.

This book surveys some recent progress toward addressing the challenge from the considerations of statistics, computation, and socio-economics. We will cover classical statistical models for rank data, including random utility models, distance-based models, and mixture models. We will discuss and compare classical and state of-the-art algorithms, such as algorithms based on Minorize-Majorization (MM), Expectation-Maximization (EM), Generalized Method-of-Moments (GMM), rank breaking, and tensor decomposition. We will also introduce principled Bayesian preference elicitation frameworks for collecting rank data. Finally, we will examine socio-economic aspects of statistically desirable decision-making mechanisms, such as Bayesian estimators.

This book can be useful in three ways: (1) for theoreticians in statistics and machine learning to better understand the considerations and caveats of learning from rank data, compared to learning from other types of data, especially cardinal data; (2) for practitioners to apply algorithms covered by the book for sampling, learning, and aggregation; and (3) as a textbook for graduate students or advanced undergraduate students to learn about the field.

This book requires that the reader has basic knowledge in probability, statistics, and algorithms. Knowledge in social choice would also help but is not required.
Learning and Decision-Making from Rank Data jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


- Preface
- Acknowledgments
- Introduction
- Statistical Models for Rank Data
- Parameter Estimation Algorithms
- The Rank-Breaking Framework
- Mixture Models for Rank Data
- Bayesian Preference Elicitation
- Socially Desirable Group Decision-Making from Rank Data
- Future Directions
- Bibliography
- Author's Biography


Dr Lirong Xia is an associate professor in the Department of Computer Science at Rensselaer Polytechnic Institute (RPI). Prior to joining RPI in 2013, he was a CRCS fellow and NSF CI Fellow at the Center for Research on Computation and Society at Harvard University. He received his Ph.D. in Computer Science and M.A. in Economics from Duke University, and his B.E. in Computer Science and Technology from Tsinghua University. His research focuses on the intersection of computer science and microeconomics. Dr. Xia is the recipient of an NSF CAREER award, a Simons-Berkeley Research Fellowship, the 2018 Rensselaer James M. Tien'66 Early Career Award, and was named as one of ""AI's 10 to watch"" by IEEE Intelligent Systems in 2015.

Ronald Brachman, Jacobs Technion-Cornell Institute at Cornell Tech.

Francesca Rossi AI Ethics Global Leader, IBM Research AI.

Peter Stone University of Texas at Austin.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.