Lemaire / Malinowski / Ifrim | Advanced Analytics and Learning on Temporal Data | Buch | 978-3-030-91444-8 | sack.de

Buch, Englisch, 195 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 324 g

Reihe: Lecture Notes in Artificial Intelligence

Lemaire / Malinowski / Ifrim

Advanced Analytics and Learning on Temporal Data

6th ECML PKDD Workshop, AALTD 2021, Bilbao, Spain, September 13, 2021, Revised Selected Papers
1. Auflage 2021
ISBN: 978-3-030-91444-8
Verlag: Springer International Publishing

6th ECML PKDD Workshop, AALTD 2021, Bilbao, Spain, September 13, 2021, Revised Selected Papers

Buch, Englisch, 195 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 324 g

Reihe: Lecture Notes in Artificial Intelligence

ISBN: 978-3-030-91444-8
Verlag: Springer International Publishing


This book constitutes the refereed proceedings of the 6th ECML PKDD Workshop on Advanced Analytics and Learning on Temporal Data, AALTD 2021, held during September 13-17, 2021. The workshop was planned to take place in Bilbao, Spain, but was held virtually due to the COVID-19 pandemic.

The 12 full papers presented in this book were carefully reviewed and selected from 21 submissions. They focus on the following topics: Temporal Data Clustering; Classification of Univariate and Multivariate Time Series; Multivariate Time Series Co-clustering; Efficient Event Detection; Modeling Temporal Dependencies; Advanced Forecasting and Prediction Models; Cluster-based Forecasting; Explanation Methods for Time Series Classification; Multimodal Meta-Learning for Time Series Regression; and Multivariate Time Series Anomaly Detection.

Lemaire / Malinowski / Ifrim Advanced Analytics and Learning on Temporal Data jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Oral Presentation.- Ranking by Aggregating Referees: Evaluating the Informativeness of Explanation Methods for Time Series Classification.- State Space approximation of Gaussian Processes for time-series forecasting.- Fast Channel Selection for Scalable Multivariate Time Series Classification.- Temporal phenotyping for characterisation of hospital care pathways of COVID patients.- A New Multivariate Time Series Co-clustering Non-Parametric Model Applied to Driving-Assistance Systems Validation.- TRAMESINO: Trainable Memory System for Intelligent Optimization of Road Traffic Control.- Detection of critical events in renewable energy production time series.- Poster Presentation.- Multimodal Meta-Learning for Time Series Regression.- Cluster-based Forecasting for Intermittent and Non-intermittent Time Series.- State discovery and prediction from multivariate sensor data.- RevDet: Robust and Memory Efficient Event Detection and Tracking in Large News Feeds.- From Univariate to Multivariate Time Series Anomaly Detection with Non-Local Information.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.