Lin / Cheng / He | Pattern Recognition and Computer Vision | E-Book | sack.de
E-Book

E-Book, Englisch, Band 15032, 507 Seiten, eBook

Reihe: Lecture Notes in Computer Science

Lin / Cheng / He Pattern Recognition and Computer Vision

7th Chinese Conference, PRCV 2024, Urumqi, China, October 18–20, 2024, Proceedings, Part II
Erscheinungsjahr 2024
ISBN: 978-981-97-8490-5
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

7th Chinese Conference, PRCV 2024, Urumqi, China, October 18–20, 2024, Proceedings, Part II

E-Book, Englisch, Band 15032, 507 Seiten, eBook

Reihe: Lecture Notes in Computer Science

ISBN: 978-981-97-8490-5
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This 15-volume set LNCS 15031-15045 constitutes the refereed proceedings of the 7th Chinese Conference on Pattern Recognition and Computer Vision, PRCV 2024, held in Urumqi, China, during October 18–20, 2024.

The 579 full papers presented were carefully reviewed and selected from 1526 submissions. The papers cover various topics in the broad areas of pattern recognition and computer vision, including machine learning, pattern classification and cluster analysis, neural network and deep learning, low-level vision and image processing, object detection and recognition, 3D vision and reconstruction, action recognition, video analysis and understanding, document analysis and recognition, biometrics, medical image analysis, and various applications.

Lin / Cheng / He Pattern Recognition and Computer Vision jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Auto-USOD: Searching Topology for Underwater Salient Object Detection.- MBA-NER: Multi-Granularity Entity Boundary-Aware Contrastive Enhanced for Two-stage Few-Shot Named Entity Recognition.- Meta-Learning Based Knowledge Distillation for Domain Adaptive Nighttime Segmentation.- Enhancing Zero-Shot Anomaly Detection: CLIP-SAM Collaboration with Cascaded Prompts.- Towards Adversarial-Robust Class-Incremental Learning via Progressively Volume-up Perturbation Generation.- Neighborhood Difference-Enhanced Graph Neural Network based on Hypergraph for Social Bot Detection.- SRMAE: Masked Image Modeling for Scale-Invariant Deep Representations.- An Entropy-based Pseudo-Label Mixup Method for Source-Free Domain Adaptation.- DAMS: Document Image Steganography with Dual Attention Multi-Scale Encoder-Decoder Architecture.- Dual-Task Cascaded for Proactive Deepfake Detection Using QPCET watermarking.- XrGroup: Graph Convolutional Networks for Group-Aware Pedestrian Trajectory Prediction with Speed information.- Generative Steganography Based on Dual-Branch Flow.- Invisible Backdoor Attack Through Singular Value Decomposition.- Self-supervised transformer-based pre-training method with General Plant Infection dataset.- Spatio-Temporal Perceiving Network Based Vision Transformer for 6-Hour Precipitation Prediction Using Multi-Meteorological Factors.- Learning Local Spatial and Global Context Activation for Visual Recognition.- A Novel Method for Autism Identification based on Multi-Atlas Features  Fusion and Graph Neural Network.- CRFNet: A medical image segmentation method using the cross attention mechanism and refined feature fusion strategy.- SCC-CAM: Weakly Supervised Segmentation on Brain Tumor MRI with Similarity Constraint and Causality.- Global Structural Consistency Set Transformer.- IMO-Net: Integrated Memory Optimization Network for Video Instance Lane Detection.- Lightweight Facial Expression Recognition Based on Hybrid Multiscale and Multi-Head Collaborative Attention.- Single model learns multiple styles of Chinese calligraphy via Style Collection Mechanism.- FusionNet for Interactive Image Segmentation.- Dynamic Spatial-Temporal Perception Graph Convolutional Networks for Traffic Flow Forecasting.- Foreign object classification for coal conveyor belts based on deep learning.- Reducing Memory Footprint in Deep Network Training by Gradient Space Reutilization.- Interpretable Unsupervised Homography Estimation.- DRC-NET: Density Reweighted Convolution Network for Edge Curve Extraction.- Unsupervised Underwater Image Enhancement Combining Imaging Restoration and Prompt Learning.- Generatice Adversarial Imitation Learning Algorithm based on Improved Curiosity Module.- Zero-shot Blind Face Restoration via Conditional Diffusion Sampling.- Task-aware Few-shot Image Generation via Dynamic Local Distribution Estimation and Sampling.- Adversarial Training and Contrastive Learning with Bidirectional Transformers for Sequence Recommendation.- Empathizing Before Generation: A Double-layered Framework for Emotional Support LLM.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.