Buch, Englisch, 372 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 590 g
Buch, Englisch, 372 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 590 g
ISBN: 978-0-323-90445-2
Verlag: William Andrew Publishing
The book summarizes the different approaches and discusses the pros and cons of each. Chapters not only describe the research but also include basic knowledge that can help readers understand the proposed work, making it an excellent resource for researchers and professionals who work in the robotics industry, haptics and in machine learning.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Part I: Tactile sensing and perception 1. Tactile sensors for dexterous manipulation 2. Robotic perception of object properties using tactile sensing 3. Multimodal perception for dexterous manipulation 4. Using Machine Learning for Material Detection with Capacitive Proximity Sensors
Part II: Skill representation and learning 5. Admittance control: learning from human and collaboration with human 6. Sensorimotor Control for Dexterous Grasping--Inspiration from human hand 7. Efficient Haptic Learning and Interaction 8. From human to robot grasping: kinematics and forces synergies 9. Learning a form-closure grasping with attractive region in environment 10. Learning hierarchical control for robust in-hand manipulation 11. Learning Industrial Assembly by Guided-DDPG
Part III: Robotic hand adaptive control 12. The novel poly-articulated prosthetic hand Hannes: A survey study, and clinical evaluation 13. Enhancing vision control by tactile sensing for robotic manipulation 14. Neural Network enhanced Optimal Control of Manipulator 15. Towards Dexterous In-Hand Manipulation of Unknown Objects: A Feedback Based Control Approach 16. Learning Industrial Assembly by Guided-DDPG