Luo / Chen / Yang | Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation | Buch | 978-0-323-90445-2 | sack.de

Buch, Englisch, 372 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 590 g

Luo / Chen / Yang

Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation


Erscheinungsjahr 2022
ISBN: 978-0-323-90445-2
Verlag: William Andrew Publishing

Buch, Englisch, 372 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 590 g

ISBN: 978-0-323-90445-2
Verlag: William Andrew Publishing


Tactile Sensing, Skill Learning and Robotic Dexterous Manipulation focuses on cross-disciplinary lines of research and groundbreaking research ideas in three research lines: tactile sensing, skill learning and dexterous control. The book introduces recent work about human dexterous skill representation and learning, along with discussions of tactile sensing and its applications on unknown objects' property recognition and reconstruction. Sections also introduce the adaptive control schema and its learning by imitation and exploration. Other chapters describe the fundamental part of relevant research, paying attention to the connection among different fields and showing the state-of-the-art in related branches.

The book summarizes the different approaches and discusses the pros and cons of each. Chapters not only describe the research but also include basic knowledge that can help readers understand the proposed work, making it an excellent resource for researchers and professionals who work in the robotics industry, haptics and in machine learning.
Luo / Chen / Yang Tactile Sensing, Skill Learning, and Robotic Dexterous Manipulation jetzt bestellen!

Weitere Infos & Material


Part I: Tactile sensing and perception 1. Tactile sensors for dexterous manipulation 2. Robotic perception of object properties using tactile sensing 3. Multimodal perception for dexterous manipulation 4. Using Machine Learning for Material Detection with Capacitive Proximity Sensors

Part II: Skill representation and learning 5. Admittance control: learning from human and collaboration with human 6. Sensorimotor Control for Dexterous Grasping--Inspiration from human hand 7. Efficient Haptic Learning and Interaction 8. From human to robot grasping: kinematics and forces synergies 9. Learning a form-closure grasping with attractive region in environment 10. Learning hierarchical control for robust in-hand manipulation 11. Learning Industrial Assembly by Guided-DDPG

Part III: Robotic hand adaptive control 12. The novel poly-articulated prosthetic hand Hannes: A survey study, and clinical evaluation 13. Enhancing vision control by tactile sensing for robotic manipulation 14. Neural Network enhanced Optimal Control of Manipulator 15. Towards Dexterous In-Hand Manipulation of Unknown Objects: A Feedback Based Control Approach 16. Learning Industrial Assembly by Guided-DDPG


Chen, Zhaopeng
Prof. Dr. Zhaopeng Chen is CEO and founder of Agile Robots AG, which is one of the fastest growing high-tec robotics companies in Germany. He is also a professor in Department of Informatics, University of Hamburg, serving as part of the faculty of Mathematics, Informatics, and Natural Sciences. He was working as Lab Deputy Head in Institute of Robotics and Mechatronics, German Aerospace Center (DLR) for over 10 years. He was leading and working on many robotics projects, including DLRESA Mars rover ground test robotic system, DLR/HIT II dexterous robotic hand system, DLR robot astronaut Rollin' Justin, et al. The robot he designed has been sent to the space station and is working till now. Prof. Dr. Chen has published over 30 academic papers, and received 2 best paper rewards. He is currently leading 2 European Projects, and 1 DFG projects, and supervising PhD students.

Luo, Shan
Dr Shan Luo is an Associate Professor in the Department of Engineering at King's College London, where he leads the Robot Perception Lab (RPL). Shan received a Ph.D. from King's College London for his work on robotic perception through tactile images. In 2016, he visited the MIT Computer and Artificial Intelligence Laboratory (CSAIL). He worked as a Postdoctoral Research Fellow at the University of Leeds and Harvard University, followed by a Lecturer (Assistant Professor) position at the University of Liverpool from 2018 to 2021. His current research focuses on developing intelligent robots capable of safe and agile interaction with the physical environment. His primary interests lie in visuo-tactile sensors, machine learning models for visual and tactile representation learning, and robotic manipulation of challenging objects like deformable and transparent items. He received the EPSRC New Investigator Award in 2021 and a UK-RAS Early Career Award in 2023.

Yang, Chenguang
Dr. Chenguang Yang is a Professor of Robotics with University of the West of England, and leader of Robot Teleoperation Group at the Bristol Robotics Laboratory. He received his Ph.D. degree in control engineering from the National University of Singapore in 2010, and postdoctoral training in human robotics from Imperial College London, U.K. His research interests lie in human-robot interaction and intelligent system design. Dr. Yang was awarded the EU Marie Curie International Incoming Fellowship, the U.K. EPSRC UKRI Innovation Fellowship, and the Best Paper Award of IEEE TRANSACTIONS ON ROBOTICS as well as over ten international conference best paper awards. He is a Co-Chair of the Technical Committee on Bio-Mechatronics and Bio-Robotics Systems, IEEE Systems, Man, and Cybernetics Society; and a Co-Chair of the Technical Committee on Collaborative Automation for Flexible Manufacturing, IEEE Robotics and Automation Society. He serves as an Associate Editor of a number of IEEE Transactions and other international leading journals.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.