MacCuish | Clustering in Bioinformatics and Drug Discovery | E-Book | sack.de
E-Book

E-Book, Englisch, 244 Seiten

Reihe: Chapman & Hall/CRC Mathematical & Computational Biology

MacCuish Clustering in Bioinformatics and Drug Discovery


1. Auflage 2010
ISBN: 978-1-4398-1679-0
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 244 Seiten

Reihe: Chapman & Hall/CRC Mathematical & Computational Biology

ISBN: 978-1-4398-1679-0
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



With a DVD of color figures, Clustering in Bioinformatics and Drug Discovery provides an expert guide on extracting the most pertinent information from pharmaceutical and biomedical data. It offers a concise overview of common and recent clustering methods used in bioinformatics and drug discovery.

Setting the stage for subsequent material, the first three chapters of the book introduce statistical learning theory, exploratory data analysis, clustering algorithms, different types of data, graph theory, and various clustering forms. In the following chapters on partitional, cluster sampling, and hierarchical algorithms, the book provides readers with enough detail to obtain a basic understanding of cluster analysis for bioinformatics and drug discovery. The remaining chapters cover more advanced methods, such as hybrid and parallel algorithms, as well as details related to specific types of data, including asymmetry, ambiguity, validation measures, and visualization.

This book explores the application of cluster analysis in the areas of bioinformatics and cheminformatics as they relate to drug discovery. Clarifying the use and misuse of clustering methods, it helps readers understand the relative merits of these methods and evaluate results so that useful hypotheses can be developed and tested.

MacCuish Clustering in Bioinformatics and Drug Discovery jetzt bestellen!

Zielgruppe


Researchers in chemoinformatics, drug discovery, computational biology, biostatistics, and bioinformatics; supplemental text for graduate students in chemoinformatics and bioinformatics.

Weitere Infos & Material


Introduction
History
Bioinformatics and Drug Discovery
Statistical Learning Theory and Exploratory Data Analysis
Clustering Algorithms
Computational Complexity

Data
Types
Normalization and Scaling
Transformations
Formats
Data Matrices
Measures of Similarity
Proximity Matrices
Symmetric Matrices
Dimensionality, Components, Discriminants
Graph Theory

Clustering Forms
Partitional
Hierarchical
Mixture Models
Sampling
Overlapping
Fuzzy
Self-Organizing
Hybrids

Partitional Algorithms
K-Means
Jarvis–Patrick
Spectral Clustering
Self-Organizing Maps

Cluster Sampling Algorithms
Leader Algorithms
Taylor–Butina Algorithm

Hierarchical Algorithms
Agglomerative
Divisive

Hybrid Algorithms
Self-Organizing Tree Algorithm
Divisive Hierarchical K-Means
Exclusion Region Hierarchies
Biclustering

Asymmetry
Measures
Algorithms

Ambiguity
Discrete Valued Data Types
Precision
Ties in Proximity
Measure Probability and Distributions
Algorithm Decision Ambiguity
Overlapping Clustering Algorithms Based on Ambiguity
Validation
Validation Measures
Visualization
Example
Large Scale and Parallel Algorithms
Leader and Leader-Follower Algorithms
Taylor–Butina
K-Means and Variants
Examples
Appendices
Bibliography
A Glossary and Exercises appear at the end of each chapter.


John D. MacCuish is the founder and president of Mesa Analytics & Computing, Inc. He has co-authored several software patents and has worked on many image processing, data mining, and statistical modeling applications, including IRS fraud detection, credit card fraud detection, and automated reasoning systems for drug discovery.
Norah E. MacCuish is the chief science officer of Mesa Analytics & Computing, Inc., where she acts as a consultant in the areas of drug design and compound acquisition and as a developer of commercial chemical information software products. She earned her Ph.D. in theoretical physical chemistry from Cornell University.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.