Marcos / Juarez / Lenz | Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems | Buch | 978-3-030-37445-7 | sack.de

Buch, Englisch, 175 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 295 g

Reihe: Lecture Notes in Artificial Intelligence

Marcos / Juarez / Lenz

Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems

AIME 2019 International Workshops, KR4HC/ProHealth and TEAAM, Poznan, Poland, June 26-29, 2019, Revised Selected Papers
1. Auflage 2019
ISBN: 978-3-030-37445-7
Verlag: Springer International Publishing

AIME 2019 International Workshops, KR4HC/ProHealth and TEAAM, Poznan, Poland, June 26-29, 2019, Revised Selected Papers

Buch, Englisch, 175 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 295 g

Reihe: Lecture Notes in Artificial Intelligence

ISBN: 978-3-030-37445-7
Verlag: Springer International Publishing


This book constitutes revised selected papers from the AIME 2019 workshops KR4HC/ProHealth 2019, the Workshop on Knowledge Representation for Health Care and Process-Oriented Information Systems in Health Care, and TEAAM 2019, the Workshop on Transparent, Explainable and Affective AI in Medical Systems.

The volume contains 5 full papers from KR4HC/ProHealth, which were selected out of 13 submissions. For TEAAM 8 papers out of 10 submissions were accepted for publication.

Marcos / Juarez / Lenz Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


KR4HC/ProHealth - Joint Workshop on Knowledge Representation for Health Care and Process-Oriented Information Systems in Health Care.- A practical exercise on re-engineering clinical guideline models using different representation languages.- A method for goal-oriented guideline modeling in PROforma and ist preliminary evaluation.- Differential diagnosis of bacterial and viral meningitis using Dominance-Based Rough Set Approach.- Modelling ICU Patients to Improve Care Requirements and Outcome Prediction of Acute Respiratory Distress Syndrome: A Supervised Learning Approach.- Deep learning for haemodialysis time series classification.- TEAAM - Workshop on Transparent, Explainable and Affective AI in Medical Systems.- Towards Understanding ICU Treatments using Patient Health Trajectories.- An Explainable Approach of Inferring Potential Medication Effects from Social Media Data.- Exploring antimicrobial resistance prediction using post-hoc interpretable methods.- Local vs. Global Interpretability of Machine Learning Models in Type 2 Diabetes Mellitus Screening.- A Computational Framework towards Medical Image Explanation.- A Computational Framework for Interpretable Anomaly Detection and Classification of Multivariate Time Series with Application to Human Gait Data Analysis.- Self-organizing maps using acoustic features for prediction of state change in bipolar disorder.- Explainable machine learning for modeling of early postoperative mortality in lung cancer.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.