Morik | Knowledge Representation and Organization in Machine Learning | Buch | 978-3-540-50768-0 | sack.de

Buch, Englisch, 322 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1060 g

Reihe: Lecture Notes in Artificial Intelligence

Morik

Knowledge Representation and Organization in Machine Learning


1989
ISBN: 978-3-540-50768-0
Verlag: Springer Berlin Heidelberg

Buch, Englisch, 322 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1060 g

Reihe: Lecture Notes in Artificial Intelligence

ISBN: 978-3-540-50768-0
Verlag: Springer Berlin Heidelberg


Machine learning has become a rapidly growing field of Artificial Intelligence. Since the First International Workshop on Machine Learning in 1980, the number of scientists working in the field has been increasing steadily. This situation allows for specialization within the field. There are two types of specialization: on subfields or, orthogonal to them, on special subjects of interest. This book follows the thematic orientation. It contains research papers, each of which throws light upon the relation between knowledge representation, knowledge acquisition and machine learning from a different angle. Building up appropriate representations is considered to be the main concern of knowledge acquisition for knowledge-based systems throughout the book. Here machine learning is presented as a tool for building up such representations. But machine learning itself also states new representational problems. This book gives an easy-to-understand insight into a new field with its problems and the solutions it offers. Thus it will be of good use to both experts and newcomers to the subject.
Morik Knowledge Representation and Organization in Machine Learning jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Explanation: A source of guidance for knowledge representation.- (Re)presentation issues in second generation expert systems.- Some aspects of learning and reorganization in an analogical representation.- A knowledge-intensive learning system for document retrieval.- Constructing expert systems as building mental models or toward a cognitive ontology for expert systems.- Sloppy modeling.- The central role of explanations in disciple.- An inference engine for representing multiple theories.- The acquisition of model-knowledge for a model-driven machine learning approach.- Using attribute dependencies for rule learning.- Learning disjunctive concepts.- The use of analogy in incremental SBL.- Knowledge base refinement using apprenticeship learning techniques.- Creating high level knowledge structures from simple elements.- Demand-driven concept formation.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.