Nicosia / Ojha / La Malfa | Machine Learning, Optimization, and Data Science | E-Book | sack.de
E-Book

E-Book, Englisch, Band 13810, 616 Seiten, eBook

Reihe: Lecture Notes in Computer Science

Nicosia / Ojha / La Malfa Machine Learning, Optimization, and Data Science

8th International Conference, LOD 2022, Certosa di Pontignano, Italy, September 18–22, 2022, Revised Selected Papers, Part I
1. Auflage 2023
ISBN: 978-3-031-25599-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

8th International Conference, LOD 2022, Certosa di Pontignano, Italy, September 18–22, 2022, Revised Selected Papers, Part I

E-Book, Englisch, Band 13810, 616 Seiten, eBook

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-25599-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This two-volume set, LNCS 13810 and 13811,  constitutes the refereed proceedings of the 8th International Conference on Machine Learning, Optimization, and Data Science, LOD 2022, together with the papers of the Second Symposium on Artificial Intelligence and Neuroscience, ACAIN 2022.

The total of 84 full papers presented in this two-volume post-conference proceedings set was carefully reviewed and selected from 226 submissions. These research articles were written by leading scientists in the fields of machine learning, artificial intelligence, reinforcement learning, computational optimization, neuroscience, and data science presenting a substantial array of ideas, technologies, algorithms, methods, and applications.

Nicosia / Ojha / La Malfa Machine Learning, Optimization, and Data Science jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Explainable Machine Learning for Drug Shortage Prediction in a Pandemic Setting.- Intelligent Robotic Process Automation for Supplier Document Management on E-Procurement Platforms.- Batch Bayesian Quadrature with Batch Updating Using Future Uncertainty Sampling.- Sensitivity analysis of Engineering Structures Utilizing Artificial Neural Networks and Polynomial.- Inferring Pathological Metabolic Patterns in Breast Cancer Tissue from Genome-Scale Models.- Deep Learning.- Machine Learning.- Reinforcement Learning.- Neural Networks.- Deep Reinforcement Learning.- Optimization.- Global Optimization.- Multi-Objective Optimization.- Computational Optimization.- Data Science.- Big Data.- Data Analytics.- Artificial Intelligence.- Detection of Morality in Tweets based on the Moral Foundation Theory.- Matrix completion for the prediction of yearly country and industry-level CO2 emissions.- A Benchmark for Real-Time Anomaly Detection Algorithms Applied in Industry 4.0.- A Matrix Factorization-based Drug-virus Link Prediction Method for SARS CoV.- Drug Prioritization.- Hyperbolic Graph Codebooks.- A Kernel-Based Multilayer Perceptron Framework to Identify Pathways Related to Cancer Stages.- Loss Function with Memory for Trustworthiness Threshold Learning: Case of Face and Facial Expression Recognition.- Machine learning approaches for predicting Crystal Systems: a brief review and a case study.- LS-PON: a Prediction-based Local Search for Neural Architecture Search.- Local optimisation of Nystrm samples through stochastic gradient descent.- Explainable Machine Learning for Drug Shortage Prediction in a Pandemic Setting.- Intelligent Robotic Process Automation for Supplier Document Management on E-Procurement Platforms.- Batch Bayesian Quadrature with Batch Updating Using Future Uncertainty Sampling.- Sensitivity analysis of Engineering Structures Utilizing Artificial Neural Networks and Polynomial.- Inferring Pathological Metabolic Patterns in Breast Cancer Tissue from Genome-Scale Models.- Deep Learning.- Machine Learning.- Reinforcement Learning.- Neural Networks.- Deep Reinforcement Learning.- Optimization.- Global Optimization.- Multi-Objective Optimization.- Computational Optimization.- Data Science.- Big Data.- Data Analytics.- Artificial Intelligence.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.