Numerical Control: Part A | Buch | 978-0-323-85059-9 | sack.de

Buch, Englisch, 594 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 1000 g

Numerical Control: Part A


Erscheinungsjahr 2022
ISBN: 978-0-323-85059-9
Verlag: William Andrew Publishing

Buch, Englisch, 594 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 1000 g

ISBN: 978-0-323-85059-9
Verlag: William Andrew Publishing


Numerical Control: Part A, Volume 23 in the Handbook of Numerical Analysis series, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors. Chapters in this volume include Numerics for finite-dimensional control systems, Moments and convex optimization for analysis and control of nonlinear PDEs, The turnpike property in optimal control, Structure-Preserving Numerical Schemes for Hamiltonian Dynamics, Optimal Control of PDEs and FE-Approximation, Filtration techniques for the uniform controllability of semi-discrete hyperbolic equations, Numerical controllability properties of fractional partial differential equations, Optimal Control, Numerics, and Applications of Fractional PDEs, and much more.
Numerical Control: Part A jetzt bestellen!

Zielgruppe


The targeted audience is mathematically trained research scientists and engineers with basic knowledge in numerical control systems.

Weitere Infos & Material


1. Control and numerical approximation of fractional diffusion equations
Umberto Biccari, Mahamadi Warma, and Enrique Zuazua
2. Modeling, control, and numerics of gas networks
Martin Gugat and Michael Herty
3. Optimal control, numerics, and applications of fractional PDEs
Harbir Antil, Thomas Brown, Ratna Khatri, Akwum Onwunta, Deepanshu Verma, and Mahamadi Warma
4. Optimal control of PDEs and FE-approximation
Eduardo Casas, Karl Kunisch, and Fredi Tröltzsch
5. Numerical solution of multi-objective optimal control and hierarchic controllability problems
Enrique Fernández-Cara
6. Numerics for stochastic distributed parameter control systems: a finite transposition method
Qi Lü, Penghui Wang, Yanqing Wang, and Xu Zhang
7. Numerical solutions of stochastic control problems: Markov chain approximation methods
Zhuo Jin, Ky Tran, and George Yin
8. Control of parameter dependent systems
Martin Lazar and Jérôme Lohéac
9. Space-time POD-Galerkin approach for parametric flow control
Francesco Ballarin, Gianluigi Rozza, and Maria Strazzullo
10. Moments and convex optimization for analysis and control of nonlinear PDEs
Milan Korda, Didier Henrion, and Jean Bernard Lasserre
11. Turnpike properties in optimal control
Timm Faulwasser and Lars Grüne
12. Some challenging optimization problems for logistic diffusive equations and their numerical modeling
Idriss Mazari, Grégoire Nadin, and Yannick Privat
13. Gradient flows and nonlinear power methods for the computation of nonlinear eigenfunctions
Leon Bungert and Martin Burger
14. Dynamic Programming versus supervised learning
Gilles Pagès and Olivier Pironneau
15. Data-driven modeling and control of large-scaledynamical systems in the Loewner framework
Ion Victor Gosea, Charles Poussot-Vassal, and Athanasios C. Antoulas
16. Machine learning and control theory
Alain Bensoussan, Yiqun Li, Dinh Phan Cao Nguyen, Minh-Binh Tran, Sheung Chi Phillip Yam, and Xiang Zhou


Trélat, Emmanuel
Emmanuel Trelat works at Sorbonne Universite in Laboratoire Jacques-Louis Lions, CNRS, Inria, equipe CAGE, Paris, France.

Zuazua, Enrique
Enrique Zuazua works in the Department of Mathematics at Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen in Germany.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.