Optimal Bayesian Classification | Buch | 978-1-5106-3069-7 | sack.de

Buch, Englisch, 362 Seiten, Paperback

Reihe: Press Monograph

Optimal Bayesian Classification


Erscheinungsjahr 2020
ISBN: 978-1-5106-3069-7
Verlag: SPIE Press

Buch, Englisch, 362 Seiten, Paperback

Reihe: Press Monograph

ISBN: 978-1-5106-3069-7
Verlag: SPIE Press


The most basic problem of engineering is the design of optimal operators. Design takes different forms depending on the random process constituting the scientific model and the operator class of interest. For classification, the random process is a feature-label distribution, and a Bayes classifier minimizes classification error. Rarely do we know the feature-label distribution or have sufficient data to estimate it.

To best use available knowledge and data, this book takes a Bayesian approach to modeling the feature-label distribution and designs an optimal classifier relative to a posterior distribution governing an uncertainty class of feature-label distributions. The origins of this approach lie in estimating classifier error when there are insufficient data to hold out test data, in which case an optimal error estimate can be obtained relative to the uncertainty class. A natural next step is to forgo classical ad hoc classifier design and find an optimal classifier relative to the posterior distribution over the uncertainty class - this being an optimal Bayesian classifier.
Optimal Bayesian Classification jetzt bestellen!

Autoren/Hrsg.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.