Buch, Deutsch, 317 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 511 g
Reihe: VDI-Buch
Verfahren, Operatoren und Hinweise für die Praxis
Buch, Deutsch, 317 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 511 g
Reihe: VDI-Buch
ISBN: 978-3-642-63052-1
Verlag: Springer
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Regelungstechnik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
Weitere Infos & Material
1 Einleitung.- 2 Struktur und Aufbau Evolutionärer Algorithmen.- 3 Grundlegende Verfahren und Operatoren.- 3.1 Fitneßzuweisung.- 3.2 Selektion.- 3.3 Rekombination.- 3.4 Mutation.- 3.5 Wiedereinfügen (Reinsertion).- 3.6 Initialisierung der Individuen.- 3.7 Abbruchkriterien.- 3.8 Zusammenfassung.- 4 Populationen, verschiedene Strategien und Konkurrenz.- 4.1 Klassifikation von Populationsmodellen.- 4.2 Globales Modell.- 4.3 Lokales Modell.- 4.4 Regionales Modell.- 4.5 Anwendung verschiedener Strategien.- 4.6 Konkurrierende Unterpopulationen.- 4.7 Zusammenfassung.- 5 Visualisierung und Optimierung.- 5.1 Systematisierung der Visualisierung von EA.- 5.2 Globale Eigenschaften einer Population.- 5.3 Lokale Eigenschaften einer Population.- 5.4 Hochdimensionale Visualisierung.- 5.5 Eigenschaften der Zielfunktion.- 5.6 Protokollierung von Daten und Ergebnissen.- 5.7 Zusammenfassung und Ausblick.- 6 Genetic and Evolutionary Algorithm Toolbox for Matlab.- 6.1 Aufbau und Struktur der GEATbx.- 6.2 Anwenderschnittstelle—Scriptfunktionen.- 6.3 Vordefinierte Algorithmen—Toolboxfunktionen.- 6.4 Zentralfunktion.- 6.5 Zielfunktionen und Beispiele.- 6.6 Einbeziehung problemspezifischen Wissens.- 6.7 Dokumentation.- 6.8 Zusammenfassung und Ausblick.- 7 Kombination von Operatoren zu Evolutionären Algorithmen.- 7.1 Allgemein einstellbare Verfahren und Operatoren.- 7.2 Global orientierte Parameteroptimierung.- 7.3 Lokal orientierte Parameteroptimierung.- 7.4 Parameteroptimierung binärer Variablen.- 7.5 Kombinatorische Optimierung.- 7.6 Parameteroptimierung von Variablen verschiedener Repräsentation.- 7.7 Zusammenfassung.- 8 Anwendung Evolutionärer Algorithmen auf Praxisprobleme.- 8.1 Vorgehen bei der Lösung von Optimierungsaufgaben.- 8.2 Optimierung mehrdimensionaler Funktionen.- 8.3 Parameteridentifikation eines Dieselmotormodells.- 8.4 Optimierung der Parameter eines Reglers (Fahrzeuglenkung).- 8.5 Steuerung eines komplexen Systems (Gewächshausklima).- 8.6 Zusammenfassung.- 9 Schlußbetrachtungen.- 9.1 Zusammenfassung.- 9.2 Ausblick.- A. 1 Historische Entwicklung Evolutionärer Algorithmen.- A.1.1 Erste Arbeiten zu Evolutionären Algorithmen.- A.1.2 Evolutionäre Programmierung.- A.1.3 Evolutionsstrategien.- A.1.4 Genetische Algorithmen.- A.1.5 Evolutionäre Algorithmen heute.- A.2 Gewächshaus- und Pflanzenmodell.- A.2.1 Zustandsgieichungen des Gewächshauses.- A.2.2 Zustandsgieichungen des Pflanzenmodells (Paprika).- A.2.3 Biomasse und Gewinn.- A.2.4 Beschränkungen.- Evolutionäre Algorithmen und Optimierung.- Kombinatorische Optimierung (TSP, Scheduling).- Behandlung von Populationen—Parallele Modelle.- Visualisierung.- Polyploidie bei Evolutionären Algorithmen.- Biologie, Genetik und Populationsgenetik.- Pflanzenwachstum und Gewächshaus.